Tuning the linear and nonlinear optical properties in double and triple δ− doped GaAs semiconductor: Impact of electric and magnetic fields

[1]  J. C. Martínez-Orozco,et al.  The nonlinear optical properties of GaAs-based quantum wells with Kratzer–Fues confining potential: Role of applied static fields and non-resonant laser radiation , 2019, Optik.

[2]  I. Sokmen,et al.  Hydrostatic Pressure and Temperature Effect on the Electron-Related Optical Responses in Symmetric and Asymmetric n-Type Double Delta-Doped GaAs Quantum Well Under Terahertz Laser Field , 2019, Journal of Electronic Materials.

[3]  M. Mora-Ramos,et al.  Electron-related optical responses in triple δ-doped quantum wells , 2018, Philosophical Magazine.

[4]  H. Dakhlaoui Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field , 2018, Optik.

[5]  A. Said,et al.  Superior catalytic performance of CaMoO4 catalyst in direct dehydrogenation of methanol into anhydrous formaldehyde , 2018, Chemical Physics Letters.

[6]  S. Ridene GaSbBi/GaSb quantum-well and wire laser diodes , 2018, Chemical Physics Letters.

[7]  S. Ridene,et al.  Proposal of InP/AlInGaAs single delta quantum well for fiber-optic communications , 2018 .

[8]  S. Ridene Mid-infrared emission in In x Ga 1−x As/GaAs T-shaped quantum wire lasers and its indium composition dependence , 2018 .

[9]  S. Ridene,et al.  Large optical gain from the 2D-transition metal dichalcogenides of MoS2/WSe2 quantum wells , 2018 .

[10]  H. Dakhlaoui,et al.  Quantum size and magnesium composition effects on the optical absorption in the MgxZn(1−x)O/ZnO quantum well , 2018 .

[11]  H. Dakhlaoui,et al.  Enhancement of the optical absorption in MgZnO/ZnO quantum well Under external electric field , 2017 .

[12]  S. Ridene,et al.  Self-consistent optimization of [111]-AlGaInAs/InP MQWs structures lasing at 1.55 μm by a genetic algorithm , 2017 .

[13]  S. Ridene,et al.  High-efficiency of AlInGaN/Al(In)GaN-delta AlGaN quantum wells for deep-ultraviolet emission , 2016 .

[14]  H. Dakhlaoui,et al.  Effect of Si δ-Doping on the Linear and Nonlinear Optical Absorptions and Refractive Index Changes in InAlN/GaN Single Quantum Wells* , 2016 .

[15]  H. Dakhlaoui,et al.  Effect of Si δ-doped layer position on optical absorption in GaAs quantum well under hydrostatic pressure , 2015 .

[16]  J. C. Martínez-Orozco,et al.  Asymmetric GaAs n-type double δ-doped quantum wells as a source of intersubband-related nonlinear optical response: Effects of an applied electric field , 2014 .

[17]  S. Sakiroglu,et al.  Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field , 2014 .

[18]  H. M. Baghramyan,et al.  Donor impurity-related linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of geometry, hydrostatic pressure, and aluminum concentration , 2014 .

[19]  I. Sokmen,et al.  Nonlinear intersubband transitions in a parabolic and an inverse parabolic quantum well under applied magnetic field , 2014 .

[20]  H. Dakhlaoui Influence of doping layer concentration on the electronic transitions in symmetric AlxGa(1x)N/GaN double quantum wells , 2013 .

[21]  I. Sokmen,et al.  Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well , 2012 .

[22]  L. Gaggero-Sager,et al.  Electron spectrum of δ-doped quantum wells by the Thomas–Fermi method at finite temperatures , 2011 .

[23]  A. Ouerghi,et al.  Photoreflectance study of InAs ultrathin layer embedded in Si-delta-doped GaAs/AlGaAs quantum wells , 2011 .

[24]  L. Gaggero-Sager,et al.  Self-consistent calculation of transport properties in Si δ-doped GaAs quantum wells as a function of the temperature , 2010 .

[25]  I. Sokmen,et al.  Effect of magnetic fields on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in square and graded quantum wells , 2010 .

[26]  T. D. Madgwick,et al.  Chemical vapour deposition synthetic diamond: materials, technology and applications , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  D. Allsopp,et al.  Intersubband absorption modulation in coupled double quantum wells by external bias , 2009 .

[28]  V. Ahmadi,et al.  Design and numerical analysis of a polarization-insensitive quantum well optoelectronic integrated amplifier-switch , 2009 .

[29]  E. Kohn,et al.  Diamond MISFET based on boron delta-doped channel , 2008 .

[30]  L. Gaggero-Sager,et al.  Transport Properties of Delta-Doped Field Effect Transistor , 2008 .

[31]  M. Buchanan,et al.  NIR, MWIR and LWIR quantum well infrared photodetector using interband and intersubband transitions , 2007 .

[32]  S. Jaziri,et al.  Theoretical study of the magnetoresistance under electric field in III–V diluted magnetic semiconductor , 2005 .

[33]  I. Sokmen,et al.  Effects of Crossed Electric and Magnetic Fields on Shallow Donor Impurity Binding Energy in a Parabolic Quantum Well , 2004 .

[34]  J. Osvald Self-consistent analysis of Si δ-doped layer placed in a non-central position in GaAs structure , 2004 .

[35]  Revaz G. Melkadze,et al.  AlGaAs-GaAs heterostructure δ-doped field-effect transistor (δ-FET) , 2004, International Conference on Micro- and Nano-Electronics.

[36]  V. Velasco,et al.  Thomas–Fermi–Dirac theory of the hole gas of a double p-type δ-doped GaAs quantum wells , 2003 .

[37]  S. Koh,et al.  SiGe heterostructure field-effect transistor using V-shaped confining potential well , 2003, IEEE Electron Device Letters.

[38]  I. Sokmen,et al.  Electronic properties of two coupled Si δ-doped GaAs structures , 2003 .

[39]  Paul Harrison,et al.  Self-consistent scattering theory of transport and output characteristics of quantum cascade lasers , 2002 .

[40]  I. Sokmen,et al.  Si δ-doped GaAs structure with different dopant distribution models , 2002 .

[41]  Paul Harrison,et al.  Carrier scattering approach to the origins of dark current in mid- and far-infrared (terahertz) quantum-well intersubband photodetectors (QWLPs) , 2001 .

[42]  I. Sokmen,et al.  Electronic subband of single Siδ-doped GaAs structures , 2000 .

[43]  Xiaojun Liu,et al.  Proton implantation and rapid thermal annealing effects on GaAs/AlGaAs quantum well infrared photodetectors , 1999 .

[44]  Gaetano Scamarcio,et al.  High-performance superlattice quantum cascade lasers , 1999 .

[45]  Shuji Nakamura,et al.  Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours , 1997 .

[46]  R. Pérez-Álvarez,et al.  A simple model for delta‐doped field‐effect transistor electronic states , 1995 .

[47]  J. Cuesta,et al.  Self-consistent analysis of electric field effects on Si delta -doped GaAs , 1994, cond-mat/9412073.

[48]  Kang L. Wang,et al.  Electron mobility enhancement from coupled wells in delta‐doped GaAs , 1993 .

[49]  Evans,et al.  Radiative transitions associated with hole confinement at Si delta -doped planes in GaAs. , 1992, Physical review. B, Condensed matter.

[50]  Degani Electron energy levels in a delta -doped layer in GaAs. , 1991, Physical review. B, Condensed matter.