From isosuperatoms to isosupermolecules: new concepts in cluster science.

As an extension of the superatom concept, a new concept "isosuperatom" is proposed, reflecting the physical phenomenon that a superatom cluster can take multiple geometrical structures with their electronic structures topologically invariant. The icosahedral and cuboctahedral Au13(5+) units in the Au25(SCH2CH2Ph)18(-), Au23(SC6H11)16(-) and Au24(SAdm)16 nanoclusters are found to be examples of this concept. Furthermore, two isosuperatoms can combine to form a supermolecule. For example, the structure of the {Ag32(DPPE)5(SC6H4CF3)24}(2-) nanocluster can be understood well in terms of a Ag22(12+) supermolecule formed by two Ag13(8+) isosuperatoms. On the next level of complexity, various combinations of isosuperatoms can lead to supermolecules with different geometrical structures but similar electronic structures, i.e., "isosupermolecules". We take two synthesized nanoclusters Au20(PPhpy2)10Cl4(2+) and Au30S(StBu)18 to illustrate two Au20(6+) isosupermolecules. The proposed concepts of isosuperatom and isosupermolecule significantly enrich the superatom concept, give a new framework for understanding a wide range of nanoclusters, and open a new door for designing assembled materials.

[1]  R. Gil,et al.  Tri-icosahedral Gold Nanocluster [Au37(PPh3)10(SC2H4Ph)10X2](+): Linear Assembly of Icosahedral Building Blocks. , 2015, ACS nano.

[2]  Jian-Jun Li,et al.  Silver nanoclusters emitting weak NIR fluorescence biomineralized by BSA. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  À. Muñoz-Castro sp3-hybridization in superatomic clusters. Analogues to simple molecules involving the Au6 core , 2014 .

[4]  N. Zheng,et al.  High-yield synthesis and crystal structure of a green Au₃₀ cluster co-capped by thiolate and sulfide. , 2014, Chemical communications.

[5]  A. Fortunelli,et al.  Au₂₄(SAdm)₁₆ nanomolecules: X-ray crystal structure, theoretical analysis, adaptability of adamantane ligands to form Au₂₃(SAdm)₁₆ and Au₂₅(SAdm)₁₆, and its relation to Au₂₅(SR)₁₈. , 2014, Journal of the American Chemical Society.

[6]  Jinlong Yang,et al.  Superatom-atom super-bonding in metallic clusters: a new look to the mystery of an Au20 pyramid. , 2014, Nanoscale.

[7]  Zhixun Luo,et al.  Special and general superatoms. , 2014, Accounts of Chemical Research.

[8]  S. Kohara,et al.  A twisted bi-icosahedral Au(25) cluster enclosed by bulky arenethiolates. , 2014, Chemical Communications.

[9]  Nathaniel L. Rosi,et al.  Nonsuperatomic [Au23(SC6H11)16]- nanocluster featuring bipyramidal Au15 kernel and trimeric Au3(SR)4 motif. , 2013, Journal of the American Chemical Society.

[10]  Jinlong Yang,et al.  Electronic Stability of Phosphine-Protected Au20 Nanocluster: Superatomic Bonding , 2013 .

[11]  N. Zheng,et al.  Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. , 2013, Nanoscale.

[12]  Jinlong Yang,et al.  New insight into the electronic shell of Au(38)(SR)(24): a superatomic molecule. , 2013, Nanoscale.

[13]  Quan‐Ming Wang,et al.  Au20 nanocluster protected by hemilabile phosphines. , 2012, Journal of the American Chemical Society.

[14]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[15]  Jinlong Yang,et al.  Communication: new insight into electronic shells of metal clusters: analogues of simple molecules. , 2012, The Journal of chemical physics.

[16]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[17]  S. Nair,et al.  Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: metal ion sensing, metal-enhanced luminescence, and biolabeling. , 2010, Chemistry.

[18]  Jijun Zhao,et al.  B(80) and other medium-sized boron clusters: core-shell structures, not hollow cages. , 2010, The journal of physical chemistry. A.

[19]  Jinlong Yang,et al.  Icosahedral B12-containing core-shell structures of B80. , 2010, Chemical communications.

[20]  M. Walter,et al.  On the Structure of a Thiolated Gold Cluster: Au44(SR)282−† , 2010 .

[21]  Jinlong Yang,et al.  Ab initio prediction of amorphous B84. , 2010, The journal of physical chemistry. A.

[22]  A. Dass Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. , 2009, Journal of the American Chemical Society.

[23]  R. Whetten,et al.  Thiolated gold nanowires: metallic versus semiconducting. , 2009, ACS nano.

[24]  R. Whetten,et al.  The Smallest Thiolated Gold Superatom Complexes , 2009 .

[25]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.

[26]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[27]  H. Häkkinen,et al.  Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. , 2008, Chemical Society reviews.

[28]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[29]  G. Schatz,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[30]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[31]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[32]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[33]  Mark A. Ratner,et al.  6‐31G* basis set for third‐row atoms , 2001, J. Comput. Chem..

[34]  U. Landman,et al.  Electronic Structure of PassivatedAu38(SCH3)24Nanocrystal , 1999 .

[35]  Mark A. Ratner,et al.  6-31G * basis set for atoms K through Zn , 1998 .

[36]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[37]  Jena,et al.  Atomic clusters: Building blocks for a class of solids. , 1995, Physical review. B, Condensed matter.

[38]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[39]  R. C. Morrison,et al.  Approximate density matrices and wigner distribution functions from density, kinetic energy density, and idempotency constraints , 1990 .

[40]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[41]  Parr,et al.  Various functionals for the kinetic energy density of an atom or molecule. , 1986, Physical review. A, General physics.

[42]  Clemenger,et al.  Ellipsoidal shell structure in free-electron metal clusters. , 1985, Physical review. B, Condensed matter.

[43]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[44]  Roald Hoffmann,et al.  Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture) , 1982 .

[45]  A. Stone New approach to bonding in transition-metal clusters and related compounds , 1981 .

[46]  G. Korzeniewski,et al.  The interaction between an oscillating dipole and a metal surface described by a jellium model and the random phase approximation , 1980 .

[47]  R. Hoffmann,et al.  Comparative bonding study of conical fragments , 1976 .

[48]  Weitao Yang,et al.  Local softness and chemical reactivity in the molecules CO, SCN− and H2CO , 1988 .

[49]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[50]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[51]  D. Michael,et al.  Structure and bonding in cluster compounds of gold , 1984 .

[52]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[53]  K. Wade The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds , 1971 .