Parametric models for incomplete continuous and categorical longitudinal data

This paper reviews models for incomplete continuous and categorical longitudinal data. In terms of Rubin's classification of missing value processes we are specifically concerned with the problem of nonrandom missingness. A distinction is drawn between the classes of selection and pattern-mixture models and, using several examples, these approaches are compared and contrasted. The central roles of identifiability and sensitivity are emphasized throughout.

[1]  Calculating the Appropriate Information Matrix for Log-linear Models When Data Are Missing at Random , 1997 .

[2]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[3]  R F Woolson,et al.  Application of empirical Bayes inference to estimation of rate of change in the presence of informative right censoring. , 1992, Statistics in medicine.

[4]  Nan M. Laird,et al.  Multivariate Logistic Models for Incomplete Binary Responses , 1996 .

[5]  R. Cook Assessment of Local Influence , 1986 .

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[8]  Geert Molenberghs,et al.  Discussion of Diggle, P. and Kenward, M. G.: 'Informative drop-out in longitudinal data analysis' , 1994 .

[9]  N M Laird,et al.  Model-based approaches to analysing incomplete longitudinal and failure time data. , 1997, Statistics in medicine.

[10]  W F Rosenberger,et al.  Closed-form estimates for missing counts in two-way contingency tables. , 1992, Statistics in medicine.

[11]  Semi-parametric estimation of models for the means and covariances in the presence of missing data , 1995 .

[12]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[13]  K. Bailey,et al.  Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. , 1989, Biometrics.

[14]  Michael G. Kenward,et al.  Nonrandom Missingness in Categorical Data: Strengt hs and Limitations , 1999 .

[15]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .

[16]  James H. Ware,et al.  A simulation study of estimators for rates of change in longitudinal studies with attrition. , 1991, Statistics in medicine.

[17]  G. Molenberghs,et al.  Marginal Modeling of Correlated Ordinal Data Using a Multivariate Plackett Distribution , 1994 .

[18]  G Molenberghs,et al.  Selection Models and Pattern‐Mixture Models for Incomplete Data with Covariates , 1999, Biometrics.

[19]  A McMurray,et al.  Measuring the quality of life of cancer patients: the Functional Living Index-Cancer: development and validation. , 1984, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[20]  I. Tannock,et al.  Randomized phase III trial comparing the new potent and selective third-generation aromatase inhibitor vorozole with megestrol acetate in postmenopausal advanced breast cancer patients. North American Vorozole Study Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[22]  V. De Gruttola,et al.  Modelling progression of CD4-lymphocyte count and its relationship to survival time. , 1994, Biometrics.

[23]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[24]  S. Baker Composite linear models for incomplete multinomial data. , 1994, Statistics in medicine.

[25]  James M. Robins,et al.  Semiparametric Regression for Repeated Outcomes With Nonignorable Nonresponse , 1998 .

[26]  B. Carlin,et al.  Bayesian Tobit Modeling of Longitudinal Ordinal Clinical Trial Compliance Data with Nonignorable Missingness , 1996 .

[27]  R. Fay Causal Models for Patterns of Nonresponse , 1986 .

[28]  D. Follmann,et al.  An approximate generalized linear model with random effects for informative missing data. , 1995, Biometrics.

[29]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[30]  S G Baker,et al.  Marginal regression for repeated binary data with outcome subject to non-ignorable non-response. , 1995, Biometrics.

[31]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[32]  J. G. Findlay,et al.  Correcting for the bias caused by drop-outs in hypertension trials. , 1988, Statistics in medicine.

[33]  P. Diggle Analysis of Longitudinal Data , 1995 .

[34]  Geert Molenberghs,et al.  Likelihood Based Frequentist Inference When Data Are Missing at Random , 1998 .

[35]  N M Laird,et al.  Mixture models for the joint distribution of repeated measures and event times. , 1997, Statistics in medicine.

[36]  M. Kenward,et al.  Informative dropout in longitudinal data analysis (with discussion) , 1994 .

[37]  W J Shih,et al.  Testing for treatment differences with dropouts present in clinical trials--a composite approach. , 1997, Statistics in medicine.

[38]  Roger A. Sugden,et al.  Multiple Imputation for Nonresponse in Surveys , 1988 .

[39]  T. Amemiya Tobit models: A survey , 1984 .

[40]  R. R. Hocking,et al.  The analysis of incomplete data. , 1971 .

[41]  Geert Molenberghs,et al.  Linear Mixed Models in Practice , 1997 .

[42]  Nan M. Laird,et al.  Regression Analysis for Categorical Variables with Outcome Subject to Nonignorable Nonresponse , 1988 .

[43]  M. Kenward Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. , 1998, Statistics in medicine.

[44]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[45]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[46]  Raymond J. Carroll,et al.  Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process , 1988 .

[47]  Taesung Park,et al.  Models for Categorical Data with Nonignorable Nonresponse , 1994 .

[48]  William S. Reece,et al.  Imputation of Missing Values When the Probability of Response Depends on the Variable Being Imputed , 1982 .

[49]  R. Little,et al.  Pattern-mixture models for multivariate incomplete data with covariates. , 1996, Biometrics.

[50]  R. Little,et al.  A note about models for selectivity bias. , 1985 .

[51]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[52]  A Heyting,et al.  Statistical handling of drop-outs in longitudinal clinical trials. , 1992, Statistics in medicine.

[53]  G Molenberghs,et al.  An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random. , 1994, Biometrics.

[54]  R. Elashoff,et al.  Missing Observations in Multivariate Statistics I. Review of the Literature , 1966 .

[55]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[56]  Garrett M. Fitzmaurice,et al.  Logistic Regression Models for Binary Panel Data with Attrition , 1996 .

[57]  Geert Molenberghs,et al.  Regression Models for Longitudinal Binary Responses with Informative Drop‐Outs , 1995 .

[58]  R Little,et al.  Intent-to-treat analysis for longitudinal studies with drop-outs. , 1996, Biometrics.

[59]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[60]  M. Kenward,et al.  The analysis of longitudinal ordinal data with nonrandom drop-out , 1997 .

[61]  Roderick J. A. Little,et al.  A Class of Pattern-Mixture Models for Normal Incomplete Data , 1994 .

[62]  Missing data perspectives of the fluvoxamine data set: a review. , 1999, Statistics in medicine.

[63]  Geert Molenberghs,et al.  Monotone missing data and pattern‐mixture models , 1998 .

[64]  M D Schluchter,et al.  Methods for the analysis of informatively censored longitudinal data. , 1992, Statistics in medicine.

[65]  Peter J. Diggle,et al.  Missing data mechanisms and pattern-mixture models , 1998 .