Quantum algorithms with local particle number conservation: noise effects and error correction

Quantum circuits with local particle number conservation (LPNC) restrict the quantum computation to a subspace of the Hilbert space of the qubit register. In a noiseless or fault-tolerant quantum computation, such quantities are preserved. In the presence of noise, however, the evolution's symmetry could be broken and non-valid states could be sampled at the end of the computation. On the other hand, the restriction to a subspace in the ideal case suggest the possibility of more resource efficient error mitigation techniques for circuits preserving symmetries that are not possible for general circuits. Here, we analyze the probability of staying in such symmetry-preserved subspaces under noise, providing an exact formula for local depolarizing noise. We apply our findings to benchmark, under depolarizing noise, the symmetry robustness of XY-QAOA, which has local particle number conserving symmetries, and is a special case of the Quantum Alternating Operator Ansatz. We also analyze the influence of the choice of encoding the problem on the symmetry robustness of the algorithm and discuss a simple adaption of the bit flip code to correct for symmetry-breaking errors with reduced resources.

[1]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[2]  Martin Leib,et al.  Beating classical heuristics for the binary paint shop problem with the quantum approximate optimization algorithm. , 2020 .

[3]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[4]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[5]  Stuart Hadfield,et al.  Characterizing local noise in QAOA circuits , 2020, IOP SciNotes.

[6]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[7]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[8]  E. Rieffel,et al.  XY mixers: Analytical and numerical results for the quantum alternating operator ansatz , 2020 .

[9]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[10]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[11]  M. Leib,et al.  Comparison of QAOA with Quantum and Simulated Annealing , 2019, 1901.01903.

[12]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[13]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[14]  Martin Leib,et al.  Forbidden subspaces for level-1 quantum approximate optimization algorithm and instantaneous quantum polynomial circuits , 2020 .

[15]  M. B. Hastings,et al.  Classical and quantum bounded depth approximation algorithms , 2019, Quantum Inf. Comput..

[16]  C. K. Andersen,et al.  Repeated quantum error detection in a surface code , 2019, Nature Physics.

[17]  Martin Leib,et al.  Training the quantum approximate optimization algorithm without access to a quantum processing unit , 2019, Quantum Science and Technology.

[18]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[19]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[20]  David Gosset,et al.  Classical algorithms for quantum mean values , 2019, Nature Physics.

[21]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[22]  Andrzej Ehrenfeucht,et al.  A new method of proving theorems on chromatic index , 1984, Discret. Math..

[23]  S. Yunoki,et al.  Symmetry-adapted variational quantum eigensolver , 2019, 1912.13146.

[24]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[25]  Manuela Herman,et al.  Quantum Computing: A Gentle Introduction , 2011 .

[26]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[27]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[28]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[29]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[30]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[31]  E. Rieffel,et al.  Near-optimal quantum circuit for Grover's unstructured search using a transverse field , 2017, 1702.02577.

[32]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[33]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  Cheng Xue,et al.  Effects of Quantum Noise on Quantum Approximate Optimization Algorithm , 2019 .

[35]  Shinichiro Taguchi,et al.  Efficient partition of integer optimization problems with one-hot encoding , 2019, Scientific Reports.

[36]  Scott N. Genin,et al.  Constrained Variational Quantum Eigensolver: Quantum Computer Search Engine in the Fock Space. , 2018, Journal of chemical theory and computation.

[37]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[38]  Masoud Mohseni,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, 2004.04197.