Strong links are important, but weak links stabilize them.

[1]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[2]  Per Bak,et al.  How Nature Works , 1996 .

[3]  C. Moorehead All rights reserved , 1997 .

[4]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[5]  T. Traut,et al.  A minimal gene set for cellular life derived by comparison of complete bacterial genomes , 1998 .

[6]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[7]  A. Hastings,et al.  Weak trophic interactions and the balance of nature , 1998, Nature.

[8]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[9]  E. Berlow,et al.  Strong effects of weak interactions in ecological communities , 1999, Nature.

[10]  Alain Degenne,et al.  Introducing Social Networks , 1999 .

[11]  P. Csermely,et al.  Chaperone-percolator model: a possible molecular mechanism of Anfinsen-cage-type chaperones. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[13]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[15]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[16]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[17]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Weitz,et al.  Re-examination of the "3/4-law" of metabolism. , 2000, Journal of theoretical biology.

[19]  K. Goh,et al.  Universal behavior of load distribution in scale-free networks. , 2001, Physical review letters.

[20]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[21]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[22]  R. Solé,et al.  Selection, Tinkering, and Emergence in Complex Networks - Crossing the Land of Tinkering , 2002 .

[23]  James H Brown,et al.  Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Doye Network topology of a potential energy landscape: a static scale-free network. , 2002, Physical review letters.

[25]  Jeanne Altmann,et al.  Social Bonds of Female Baboons Enhance Infant Survival , 2003, Science.

[26]  Peter Sheridan Dodds,et al.  Information exchange and the robustness of organizational networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[28]  T. Vicsek,et al.  Topological phase transitions of random networks , 2003, cond-mat/0306170.

[29]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[30]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Yaakov Levy,et al.  Water and proteins: a love-hate relationship. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Tsien,et al.  Specificity and Stability in Topology of Protein Networks , 2022 .