On Korobov Lattice Rules in Weighted Spaces

This paper studies the error bounds of multivariate integration in weighted function spaces using lattice rules of the Korobov form, in which the generating vector for an n-point rule with n prime has the form (1,a,...,ad -1) (mod,n). With the parameter a chosen optimally, we establish new error bounds for Korobov lattice rules in weighted Korobov spaces. In particular, we prove that if the weights decay sufficiently fast, the optimal Korobov lattice rule has an error bound of order O(n^{-\alpha/2 +\delta})$ (for arbitrary $\delta \,{>}\, 0$), with the implied constant depending at worst polynomially on the dimension. Here $\alpha \,{>}\,1$ is the smoothness parameter of the weighted Korobov spaces. We generalize the construction to the case where n is a product of arbitrary distinct prime numbers, with the purpose of reducing the construction cost without sacrificing much of the quality of the lattice rules. A corresponding result is deduced for weighted Sobolev spaces of nonperiodic functions, using randomly shifted optimal Korobov lattice rules. A comparison of the worst-case errors for Korobov lattice rules and the recent component-by-component constructions is presented. The investigation establishes the usefulness of (shifted) optimal Korobov lattice rules for integration, even in high dimensions, if the weights which characterize the weighted spaces are suitably chosen.

[1]  Frances Y. Kuo,et al.  Reducing the construction cost of the component-by-component construction of good lattice rules , 2004, Math. Comput..

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  Fred J. Hickernell,et al.  A Comparison of Random and Quasirandom Points for Multidimensional Quadrature , 1995 .

[4]  Xiaoqun Wang,et al.  Strong tractability of multivariate integration using quasi-Monte Carlo algorithms , 2003, Math. Comput..

[5]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[6]  A. Owen THE DIMENSION DISTRIBUTION AND QUADRATURE TEST FUNCTIONS , 2003 .

[7]  Kai-Tai Fang,et al.  The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..

[8]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[9]  I. F. Sharygin,et al.  A lower estimate for the error of quadrature formulae for certain classes of functions , 1963 .

[10]  Frances Y. Kuo,et al.  On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces , 2002, Math. Comput..

[11]  Henryk Wozniakowski,et al.  Tractability of Integration in Non-periodic and Periodic Weighted Tensor Product Hilbert Spaces , 2002, J. Complex..

[12]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[13]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[14]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[15]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[16]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[17]  I. Meleshko Approximate evaluation of Cauchy type repeated integrals and their principal values , 1979 .

[18]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..

[19]  Joseph F. Traub,et al.  Faster Valuation of Financial Derivatives , 1995 .

[20]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[21]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[22]  Fred J. Hickernell,et al.  Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..

[23]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[24]  E. Wright,et al.  An Introduction to Number Theory , 1960 .

[25]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..