Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway

Abstract Two crystals from a sample of titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway, were extracted for structure analysis and shown to have triclinic symmetry. Unit-cell parameters are as follows: a = 7.0696(4) Å, b = 8.7167(5) Å, c = 6.5695(3) Å, α = 89.7372(11)°, β = 113.7607(10)°, γ = 90.2929(13)°, V = 370.52(6) Å3 for one crystal and a = 7.0612(5) Å, b = 8.7102(6) Å, c = 6.5628(4) Å, α = 89.7804(16)°, β = 113.7713(13)°, γ = 90.2502(16)°, V = 369.39(7) Å3 for the other. The interaxial angles α and γ deviate from the value of 90° required for monoclinic symmetry by ∼200-250 standard deviations. The single-crystal X-ray intensities were averaged in both monoclinic and triclinic Laue symmetries, giving R(merge) values of ∼14% and ∼1.3% respectively. For both crystals, more than 50 reflections with I > 3σI violated the criterion for the presence of the a-glide required for monoclinic A2/a symmetry. Both crystals were refined in the space group A 1̅ with Z = 4, and final R1 indices are 4.4% and 4.7% (wR2 = 8.4 and 8.9%) respectively. The composition of one crystal was determined by electron microprobe analysis: Ca[Ti0.623Ta0.105Nb0.018Al0.137Fe3+0.046Sn4+0.083]Σ=1.012(SiO4)O. The characteristic corner-sharing [MO5] chains of identical octahedra observed in monoclinic titanite become chains of alternating M(1) and M(2) octahedra of different size, with the stronger X-ray scattering constituents concentrated at the M(2) site. Short-range bond-valence considerations suggest that the M cations will order as Al-O-Ta in adjacent octahedra, and when present in sufficient amounts, will couple along the chain to break long-range monoclinic symmetry.

[1]  E. Tillmanns,et al.  Heftetjernite, a new scandium mineral from the Heftetjern pegmatite, Tørdal, Norway , 2010 .

[2]  JouN B. HrccrNs,et al.  The structure of malayaite , CaSnOSiO 4 , a tin analog of titanite , 2007 .

[3]  R. Mitchell,et al.  SOLID SOLUTIONS OF NIOBIUM IN SYNTHETIC TITANITE , 2006 .

[4]  F. Hawthorne,et al.  OFTEDALITE, (Sc,Ca,Mn2+)2 K (Be,Al)3 Si12 O30, A NEW MEMBER OF THE MILARITE GROUP FROM THE HEFTETJERN PEGMATITE, TØRDAL, NORWAY: DESCRIPTION AND CRYSTAL STRUCTURE , 2006 .

[5]  R. Mitchell,et al.  Tantalum-bearing titanite: synthesis and crystal structure data , 2006 .

[6]  P. Černý,et al.  NIOBIAN TITANITE FROM THE HURON CLAIM PEGMATITE, , 2006 .

[7]  R. Mitchell,et al.  COMPOSITION AND PARAGENESIS OF Na-, Nb- AND Zr-BEARING TITANITE FROM KHIBINA, RUSSIA, AND CRYSTAL-STRUCTURE DATA FOR SYNTHETIC ANALOGUES , 2005 .

[8]  T. Malcherek,et al.  Temperature and composition dependence of structural phase transitions in Ca(TixZr1-x)OGeO4 , 2005 .

[9]  R. Mitchell,et al.  Crystal chemistry of titanite-structured compounds: the CaTi1-xZrxOSiO4 (x≤0.5) series , 2005 .

[10]  R. Mitchell,et al.  Solid solution of rare earth elements in synthetic titanite: a reconnaissance study , 2005 .

[11]  J. Stäuble,et al.  Titanit als mögliche Wirtstruktur zur Fixierung von Elementen aus radioaktiven Abfällen , 1981, Naturwissenschaften.

[12]  T. Malcherek,et al.  CaZrGeO5 and the triclinic instability of the titanite structure type , 2005 .

[13]  A. Chakhmouradian Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia , 2004 .

[14]  L. Ottolini,et al.  Replacement textures involving four scandium silicate minerals in the Heftetjern granitic pegmatite, Norway , 2004 .

[15]  A. Mottana,et al.  Nb-containing titanite: new data and crystal structure refinement. , 2004 .

[16]  M. Kunz,et al.  Pressure-induced phase transition in malayaite, CaSnOSiO4 , 2003 .

[17]  G. Ivaldi,et al.  Kristiansenite, a new calcium–scandium–tin sorosilicate from granite pegmatite in Tørdal, Telemark, Norway , 2002 .

[18]  I. Brown,et al.  The Chemical Bond in Inorganic Chemistry: The Bond Valence Model , 2002 .

[19]  A. Zaitsev,et al.  CALCITE – AMPHIBOLE – CLINOPYROXENE ROCK FROM THE AFRIKANDA COMPLEX, KOLA PENINSULA, RUSSIA: MINERALOGY AND A POSSIBLE LINK TO CARBONATITES. II. OXYSALT MINERALS , 2002 .

[20]  J. Manson The Chemical Bond in Inorganic Chemistry: the Valence Bond Model By I. David Brown (McMaster University). Oxford University Press: New York. 2002. xii +278 pp. $130.00. ISBN 0-19-850870-0. , 2002 .

[21]  M. Erambert,et al.  AN INTERGROWTH OF SCANDIOBABINGTONITE AND CASCANDITE FROM THE HEFTETJERN GRANITE PEGMATITE, NORWAY , 1999 .

[22]  John M. Hughes,et al.  Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries , 1997 .

[23]  M. Novák,et al.  The Al (Nb, Ta) Ti(in−2) substitution in titanite: the emergence of a new species? , 1995 .

[24]  J. K. Russell,et al.  LREE-rich niobian titanite from Mount Bisson, British Columbia; chemistry and exchange mechanisms , 1994 .

[25]  H. Austrheim,et al.  Kuliokite-(Y) and its alteration products kainosite-(Y) and kamphaugite-(Y) from granite pegmatite in Tørdal, Norway , 1993 .

[26]  P. Cˇerný Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research , 1992 .

[27]  G. Rossi,et al.  The crystal-chemistry of high-aluminium titanites , 1991 .

[28]  G. Rossman,et al.  Alpha-decay damage in titanite , 1991 .

[29]  S. Bergstøl,et al.  Caesian Bazzite in Granite pegmatite in Tørdal, Telemark, Norway , 1990 .

[30]  S. Bergstøl,et al.  Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in terdal, Telemark, Norway. A contribution to the mineralogy and geochemistry of scandium and tin , 1988 .

[31]  F. Hawthorne,et al.  Tantalian niobian titanite from the Irgon claim, southeastern Manitoba , 1985 .

[32]  F. Spear,et al.  Aluminous titanite (sphene) from the Eclogite Zone, south-central Tauern Window, Austria , 1985 .

[33]  Franklin F. Foit,et al.  The crystal structure of an Al-rich titanite from Grisons, Switzerland , 1984 .

[34]  F. Forr,et al.  The crystal structure of an Al-rich titanite from Grisons. Switzerland , 1984 .

[35]  B. Paul,et al.  NIOBIAN TITANITE FROM THE HURON CLAIM PEGMATITE, SOUTHEASTERN MANITOBA* , 1981 .

[36]  J. B. Higgins,et al.  The structure of malayaite, CaSnOSiO 4 , a tin analog of titanite , 1977 .

[37]  S. Bergstøl,et al.  Tveitite, a new calcium yttrium fluoride , 1977 .

[38]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[39]  G. Brown,et al.  High-temperature structural study of the P2 1 /a A2/a phase transition in synthetic titanite, CaTiSiO 5 , 1976 .

[40]  G. V. Gibbs,et al.  The crystal structure of synthetic titanite, CaTiOSiO 4 , and the domain textures of natural titanites , 1976 .

[41]  B. HrccrNs The crystal chemistry and space groups of natural and synthetic titanites , 1976 .

[42]  A. Clark A tantalum-rich variety of sphene , 1974, Mineralogical Magazine.

[43]  G. D. Rieck,et al.  International tables for X-ray crystallography , 1962 .

[44]  W. Zachariasen II. The Crystal Structure of Titanite , 1930 .