Sixth-order symplectic and symmetric explicit ERKN schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations

This paper is devoted to the analysis of the sixth-order symplectic and symmetric explicit extended Runge–Kutta–Nyström (ERKN) schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations. Fourteen practical sixth-order symplectic and symmetric explicit ERKN schemes are constructed, and their phase properties are investigated. The paper is accompanied by five numerical experiments, including a nonlinear two-dimensional wave equation. The numerical results in comparison with the sixth-order symplectic and symmetric Runge–Kutta–Nyström methods and a Gautschi-type method demonstrate the efficiency and robustness of the new explicit schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations.

[1]  Xinyuan Wu,et al.  A note on stability of multidimensional adapted Runge–Kutta–Nyström methods for oscillatory systems☆ , 2012 .

[2]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[3]  Xinyuan Wu,et al.  Structure-Preserving Algorithms for Oscillatory Differential Equations , 2013 .

[4]  Xinyuan Wu,et al.  A simplified Nyström-tree theory for extended Runge-Kutta-Nyström integrators solving multi-frequency oscillatory systems , 2014, Comput. Phys. Commun..

[5]  Xinyuan Wu,et al.  A new high precision energy-preserving integrator for system of oscillatory second-order differential equations , 2012 .

[6]  Pablo Martín,et al.  A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.

[7]  Robert D. Skeel,et al.  Canonical Runge-Kutta-Nystro¨m methods of orders five and six , 1994 .

[8]  Hans Van de Vyver,et al.  Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems , 2005, Comput. Phys. Commun..

[9]  Bin Wang,et al.  Arbitrary-Order Trigonometric Fourier Collocation Methods for Multi-Frequency Oscillatory Systems , 2016, Found. Comput. Math..

[10]  Xinyuan Wu,et al.  Explicit multi-frequency symmetric extended RKN integrators for solving multi-frequency and multidimensional oscillatory reversible systems , 2014, Calcolo.

[11]  Jianlin Xia,et al.  Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods , 2012 .

[12]  Bin Wang,et al.  Novel improved multidimensional Störmer-Verlet formulas with applications to four aspects in scientific computation , 2013, Math. Comput. Model..

[13]  Bin Wang,et al.  Bounds on asymptotic-numerical solvers for ordinary differential equations with extrinsic oscillation☆ , 2015 .

[14]  Bin Wang,et al.  A highly accurate explicit symplectic ERKN method for multi-frequency and multidimensional oscillatory Hamiltonian systems , 2013, Numerical Algorithms.

[15]  Theodore E. Simos,et al.  A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems , 2012, Appl. Math. Comput..

[16]  E. Hairer,et al.  Numerical Energy Conservation for Multi-Frequency Oscillatory Differential Equations , 2005 .

[17]  Theodore E. Simos,et al.  An eight-step semi-embedded predictor-corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown , 2015, J. Comput. Appl. Math..

[18]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[19]  Xinyuan Wu,et al.  Extended RKN-type methods for numerical integration of perturbed oscillators , 2009, Comput. Phys. Commun..

[20]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[21]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[22]  T. E. Simos,et al.  Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  E. Stiefel Linear And Regular Celestial Mechanics , 1971 .

[24]  Ernst Hairer,et al.  Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..

[25]  T. E. Simos,et al.  Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs , 2009 .

[26]  Bin Wang,et al.  ERKN integrators for systems of oscillatory second-order differential equations , 2010, Comput. Phys. Commun..

[27]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[28]  Bin Wang,et al.  Efficient energy-preserving integrators for oscillatory Hamiltonian systems , 2013, J. Comput. Phys..

[29]  Jesús Vigo-Aguiar,et al.  Symplectic conditions for exponential fitting Runge-Kutta-Nyström methods , 2005, Math. Comput. Model..

[30]  Ana B. González,et al.  New methods for oscillatory problems based on classical codes , 2002 .

[31]  Elena Celledoni,et al.  Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , 2012, J. Comput. Phys..

[32]  Xinyuan Wu,et al.  A Filon-type asymptotic approach to solving highly oscillatory second-order initial value problems , 2013, J. Comput. Phys..

[33]  Bin Wang,et al.  ERKN methods for long-term integration of multidimensional orbital problems , 2013 .

[34]  Jianlin Xia,et al.  Error bounds for explicit ERKN integrators for systems of multi-frequency oscillatory second-order differential equations , 2013 .