Performance of Viterbi Decoding With and Without ARQ on Rician Fading Channels

In this paper, we investigate the performance of the Viterbi decoding algorithm with/without Automatic Repeat reQuest (ARQ) over a Rician flat fading channel with unlimited interleaving. We show that the decay rate of the average bit error probability with respect to the bit energy to noise ratio is at least equal to <inline-formula> <tex-math notation="LaTeX">$d_{f}$ </tex-math></inline-formula> at high-bit energy to noise ratio for both cases (with ARQ and without ARQ), where <inline-formula> <tex-math notation="LaTeX">$d_{f}$ </tex-math></inline-formula> is the free distance of the convolutional code. The Yamamoto-Itoh flag helps to reduce the average bit error probability by a factor of <inline-formula> <tex-math notation="LaTeX">$4^{d_{f}}$ </tex-math></inline-formula> with a negligible retransmission rate. We also prove an interesting result that the average bit error probability decays exponentially fast with respect to the Rician factor for any fixed bit energy per noise ratio. In addition, the average bit error exponent with respect to the Rician factor is shown to be <inline-formula> <tex-math notation="LaTeX">$d_{f}$ </tex-math></inline-formula>.

[1]  Boris D. Kudryashov Error probability for repeat request systems with convolutional codes , 1993, IEEE Trans. Inf. Theory.

[2]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[3]  Yunghsiang Sam Han,et al.  New HARQ Scheme Based on Decoding of Tail-Biting Convolutional Codes in IEEE 802.16e , 2011, IEEE Transactions on Vehicular Technology.

[4]  Harry Leib,et al.  Coded Diversity on Block-Fading Channels , 1999, IEEE Trans. Inf. Theory.

[5]  Emina Soljanin,et al.  Punctured vs Rateless Codes for Hybrid ARQ , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[6]  G. David Forney,et al.  Convolutional Codes II. Maximum-Likelihood Decoding , 1974, Inf. Control..

[7]  Bixio Rimoldi,et al.  Principles of Digital Communication: A Top-Down Approach , 2016 .

[8]  Hiroyuki Fujiwara,et al.  The Performance of the New Convolutional Coded ARQ Scheme for Moderately Time-Varying Channels , 1995 .

[9]  Giuseppe Caire,et al.  The throughput of hybrid-ARQ protocols for the Gaussian collision channel , 2001, IEEE Trans. Inf. Theory.

[10]  Carl W. Baum,et al.  A Reliability Output Viterbi Algorithm with Applications to Hybrid ARQ , 1998, IEEE Trans. Inf. Theory.

[11]  Kohji Itoh,et al.  Viterbi decoding algorithm for convolutional codes with repeat request , 1980, IEEE Trans. Inf. Theory.

[12]  Robert G. Gallager,et al.  A simple derivation of the coding theorem and some applications , 1965, IEEE Trans. Inf. Theory.

[13]  H. Vincent Poor,et al.  Feedback in the Non-Asymptotic Regime , 2011, IEEE Transactions on Information Theory.

[14]  Takeshi Hashimoto On the error exponent of convolutionally coded ARQ , 1994, IEEE Trans. Inf. Theory.

[15]  Behrooz Makki,et al.  Green communication via Type-I ARQ: Finite block-length analysis , 2014, 2014 IEEE Global Communications Conference.

[16]  Richard D. Wesel,et al.  Variable-Length Convolutional Coding for Short Blocklengths With Decision Feedback , 2014, IEEE Transactions on Communications.

[17]  Vincent Y. F. Tan,et al.  On Gaussian MACs With Variable-Length Feedback and Non-Vanishing Error Probabilities , 2016, IEEE Transactions on Information Theory.

[18]  Vincent Y. F. Tan,et al.  Error exponent of the common-message broadcast channel with variable-length feedback , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[19]  Takeshi Hashimoto,et al.  Composite Scheme LR + Th for Decoding with Erasures and Its Effective Equivalence to Forney's Rule , 1999, IEEE Trans. Inf. Theory.

[20]  Richard D. Wesel,et al.  Reliability-Output Decoding of Tail-Biting Convolutional Codes , 2013, IEEE Transactions on Communications.

[21]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[22]  Russell Ju Fu Fang Lower bounds on reliability functions of variable-length nonsystematic convolutional codes for channels with noiseless feedback , 1971, IEEE Trans. Inf. Theory.

[23]  이필중,et al.  시간에 따라 변하는 채널에서의 적응 부호 ( An Adaptive Coding Scheme for Time-Varying Channels ) , 1995 .

[24]  Carl-Erik W. Sundberg,et al.  List Viterbi algorithms for continuous transmission , 2001, IEEE Trans. Commun..

[25]  J. Omura,et al.  On the Viterbi decoding algorithm , 1969, IEEE Trans. Inf. Theory.

[26]  Kohji Itoh,et al.  Asymptotic performance of a modified Schalkwijk-Barron scheme for channels with noiseless feedback (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[27]  Lan V. Truong Performance of Viterbi Decoding on Interleaved Rician Fading Channels , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[28]  Jürgen Freudenberger,et al.  An algorithm for detecting unreliable code sequence segments and its applications , 2004, IEEE Transactions on Communications.

[29]  Harry Leib,et al.  Evaluating the performance of convolutional codes over block fading channels , 1999, IEEE Trans. Inf. Theory.

[30]  Hiroyuki Fujiwara,et al.  A Convolutional Coded ARQ Scheme with Retransmission Criterion Based on an Estimated Decoding Error Rate for Time-varying Channels , 1994 .

[31]  Behrooz Makki,et al.  Finite Block-Length Analysis of the Incremental Redundancy HARQ , 2014, IEEE Wireless Communications Letters.

[32]  K. X. M. Tzeng,et al.  Convolutional Codes and 'Their Performance in Communication Systems , 1971 .