Enhanced Compositional Mapping through Integrated Full-Range Spectral Analysis

We developed a method to enhance compositional mapping from spectral remote sensing through the integration of visible to near infrared (VNIR, ~0.4–1 µm), shortwave infrared (SWIR, ~1–2.5 µm), and longwave infrared (LWIR, ~8–13 µm) data. Spectral information from the individual ranges was first analyzed independently and then the resulting compositional information in the form of image endmembers and apparent abundances was integrated using ISODATA cluster analysis. Independent VNIR, SWIR, and LWIR analyses of a study area near Mountain Pass, California identified image endmembers representing vegetation, manmade materials (e.g., metal, plastic), specific minerals (e.g., calcite, dolomite, hematite, muscovite, gypsum), and general lithology (e.g., sulfate-bearing, carbonate-bearing, and silica-rich units). Integration of these endmembers and their abundances produced a final full-range classification map incorporating much of the variation from all three spectral ranges. The integrated map and its 54 classes provide additional compositional information that is not evident in the VNIR, SWIR, or LWIR data alone, which allows for more complete and accurate compositional mapping. A supplemental examination of hyperspectral LWIR data and comparison with the multispectral LWIR data used in the integration illustrates its potential to further improve this approach.

[1]  T. Warner,et al.  Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada , 2007 .

[2]  Fred A. Kruse Combined SWIR and LWIR mineral mapping using MASTER/ASTER , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[3]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[4]  E. Milton,et al.  The use of the empirical line method to calibrate remotely sensed data to reflectance , 1999 .

[5]  J. Mustard,et al.  Characterization of spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, Antarctica: weathering, alteration, and magmatic processes , 2013, Antarctic Science.

[6]  David R. Thompson,et al.  A Case Study of Spectral Signature Detection in Multimodal and Outlier-Contaminated Scenes , 2013, IEEE Geoscience and Remote Sensing Letters.

[7]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[8]  Nirmal Keshava,et al.  A Survey of Spectral Unmixing Algorithms , 2003 .

[9]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[10]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[11]  Eyal Ben-Dor,et al.  Integration of Hyperspectral Shortwave and Longwave Infrared Remote-Sensing Data for Mineral Mapping of Makhtesh Ramon in Israel , 2016, Remote. Sens..

[12]  Maria Petrou,et al.  A Time-Efficient Method for Anomaly Detection in Hyperspectral Images , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[13]  D. O. North,et al.  An Analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems , 1963 .

[14]  P. Hardin,et al.  Hyperspectral Remote Sensing of Urban Areas , 2013 .

[15]  David W. Warren,et al.  First flights of a new airborne thermal infrared imaging spectrometer with high area coverage , 2011, Defense + Commercial Sensing.

[16]  Gail P. Anderson,et al.  Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..

[17]  J. Mustard,et al.  Joint analysis of ISM and TES spectra: The utility of multiple wavelength regimes for Martian surface studies , 2005 .

[18]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[19]  S. Hook,et al.  The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .

[20]  S. J. Young,et al.  An in‐scene method for atmospheric compensation of thermal hyperspectral data , 2002 .

[21]  M. Salvatore,et al.  The dominance of cold and dry alteration processes on recent Mars, as revealed through pan-spectral orbital analyses , 2014 .

[22]  Stefano Vignudelli,et al.  Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self‐organizing maps , 2016 .

[23]  Ronald G. Resmini,et al.  Atmospheric compensation of thermal infrared hyperspectral imagery with the emissive empirical line method and the in-scene atmospheric compensation algorithms: a comparison , 2010, Defense + Commercial Sensing.

[24]  A. Kahle,et al.  Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows , 1991 .

[25]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[26]  Yichun Xie,et al.  Remote sensing imagery in vegetation mapping: a review , 2008 .

[27]  Carle M. Pieters,et al.  Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust , 2014 .

[28]  Shelli R. Cone,et al.  Exploration of integrated visible to near-, shortwave-, and longwave-infrared (full range) hyperspectral data analysis , 2015, Defense + Security Symposium.

[29]  Wendy M. Calvin,et al.  Synthesis of high-spatial resolution hyperspectral VNIR/SWIR and TIR image data for mapping weathering and alteration minerals in Virginia City, Nevada , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[30]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[31]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[32]  Qian Du,et al.  Foreword to the Special Issue on Spectral Unmixing of Remotely Sensed Data , 2011 .

[33]  M. Griffin,et al.  Compensation of Hyperspectral Data for Atmospheric Effects , 2003 .

[34]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[35]  Benoit Rivard,et al.  Visible and short-wave infrared reflectance spectroscopy of REE fluorocarbonates , 2014 .

[36]  T. Warner,et al.  Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada: a rule-based system , 2010 .

[37]  E. Duke,et al.  Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing , 1994 .

[38]  Fred A. Kruse,et al.  Integrated visible and near-infrared, shortwave infrared, and longwave infrared full-range hyperspectral data analysis for geologic mapping , 2015 .

[39]  John F. Mustard,et al.  Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira crater, Mars , 2015 .

[40]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[41]  Fred A. Kruse,et al.  Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping , 2015 .

[42]  Simon J. Hook,et al.  Synergy of VSWIR (0.4-2.5 mu m) and MTIR (3.5-12.5 mu m) data for post-fire assessments , 2012 .

[43]  Robert H. Weisberg,et al.  A Review of Self-Organizing Map Applications in Meteorology and Oceanography , 2011 .

[44]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[45]  Mohamad Awad,et al.  An Unsupervised Artificial Neural Network Method for Satellite Image Segmentation , 2010, Int. Arab J. Inf. Technol..

[46]  W. Calvin,et al.  Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images , 2005 .

[47]  Thomas Cudahy,et al.  Mapping porphyry-skarn alteration at Yerington, Nevada, using airborne hyperspectral VNIR-SWIR-TIR imaging data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[48]  J. Boardman,et al.  Leveraging the High Dimensionality of AVIRIS Data for improved Sub-Pixel Target i Unmixing and Rejection of False Positives : Mixture Tuned Matched Filtering , 1998 .

[49]  Stephen B. Castor,et al.  THE MOUNTAIN PASS RARE-EARTH CARBONATITE AND ASSOCIATED ULTRAPOTASSIC ROCKS, CALIFORNIA , 2008 .

[50]  Alexander Berk,et al.  Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm , 2005, SPIE Remote Sensing.

[51]  Eyal Ben-Dor,et al.  Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic , 2014, Remote. Sens..

[52]  Timothy Bowers Analysis of VIS-LWIR hyperspectral image data for detailed geologic mapping , 2002, SPIE Defense + Commercial Sensing.

[53]  Timothy A. Warner,et al.  Does single broadband or multispectral thermal data add information for classification of visible, near‐ and shortwave infrared imagery of urban areas? , 2009 .

[54]  I. Reed,et al.  A Detection Algorithm for Optical Targets in Clutter , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[55]  B. Csatho,et al.  Knowledge discovery in urban environments from fused multi-dimensional imagery , 2007, 2007 Urban Remote Sensing Joint Event.

[56]  V. L. Mulder,et al.  The use of remote sensing in soil and terrain mapping — A review , 2011 .

[57]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[58]  D. F. Hewett Geology and mineral resources of the Ivanpah quadrangle, California and Nevada , 1956 .

[59]  Fred A. Kruse,et al.  Integrated visible to near infrared, short wave infrared, and long wave infrared spectral analysis for surface composition mapping near Mountain Pass, California , 2015, Defense + Security Symposium.

[60]  D. R. Shawe,et al.  Rare-Earth Mineral Deposits of the Mountain Pass District, San Bernardino County, California. , 1954, Science.

[61]  K. Schmidt,et al.  Preliminary Surficial Geologic Map of the Mesquite Lake 30' X 60' Quadrangle, California and Nevada , 2006 .

[62]  Martin Chamberland,et al.  Long-wave infrared surface reflectance spectra retrieved from Telops Hyper-Cam imagery , 2014, Defense + Security Symposium.

[63]  James K. Crowley,et al.  Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm) , 2007 .

[64]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[65]  Fred A. Kruse,et al.  Analysis of Imaging Spectrometer Data Using $N$ -Dimensional Geometry and a Mixture-Tuned Matched Filtering Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[66]  David W. Warren,et al.  MAKO: a high-performance, airborne imaging spectrometer for the long-wave infrared , 2010, Optical Engineering + Applications.

[67]  A. Ehsani,et al.  Efficiency of Landsat ETM+ Thermal Band for Land Cover Classification of the Biosphere Reserve “Eastern Carpathians†(Central Europe) Using SMAP and ML Algorithms , 2010 .