Motorcycle Graphs and Straight Skeletons

We present a new algorithm to compute motorcycle graphs. It runs in $O(n \sqrt{n}\log n)$ time when n is the number of motorcycles. We give a new characterization of the straight skeleton of a nondegenerate polygon. For a polygon with n vertices and h holes, we show that it yields a randomized algorithm that reduces the straight skeleton computation to a motorcycle graph computation in expected $O(n\sqrt{h+1}\log^2 n)$ time. Combining these results, we can compute the straight skeleton of a nondegenerate polygon with h holes and with n vertices, among which r are reflex vertices, in $O(n\sqrt{h+1}\log^2 n+r \sqrt{r} \log r)$ expected time. In particular, we cancompute the straight skeleton of a nondegenerate polygon with n vertices in $O(n\sqrt{n}\log^2n)$ expected time.

[1]  Sabine Coquillart,et al.  3D Reconstruction of Complex Polyhedral Shapes from Contours using a Simplified Generalized Voronoi Diagram , 1996, Comput. Graph. Forum.

[2]  Jirí Matousek Cutting hyperplane arrangements , 1991, Discret. Comput. Geom..

[3]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[4]  David Eppstein,et al.  Raising roofs, crashing cycles, and playing pool: applications of a data structure for finding pairwise interactions , 1998, SCG '98.

[5]  Jirí Matousek,et al.  On Constants for Cuttings in the Plane , 1998, Discret. Comput. Geom..

[6]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[7]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[8]  Erik D. Demaine,et al.  Folding and one straight cut suffice , 1999, SODA '99.

[9]  Jirí Matousek Construction of ɛ-nets , 1990, Discret. Comput. Geom..

[10]  Subhash Suri,et al.  A pedestrian approach to ray shooting: shoot a ray, take a walk , 1993, SODA '93.

[11]  Gill Barequet,et al.  Morphing between shapes by using their straight skeletons , 2003, SCG '03.

[12]  Micha Sharir,et al.  The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..

[13]  Leonidas J. Guibas,et al.  Visibility and intersection problems in plane geometry , 1989, Discret. Comput. Geom..

[14]  Mark de Berg,et al.  On lazy randomized incremental construction , 1995, Discret. Comput. Geom..

[15]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: new results in computational origami , 1999, SCG '99.

[16]  Erik D. Demaine,et al.  Folding and Cutting Paper , 1998, JCDCG.

[17]  Franz Aurenhammer,et al.  Straight Skeletons for General Polygonal Figures in the Plane , 1996, COCOON.

[18]  Claus Brenner TOWARDS FULLY AUTOMATIC GENERATION OF CITY MODELS , 2000 .

[19]  Evanthia Papadopoulou,et al.  International Journal of Computational Geometry & Applications C World Scientiic Publishing Company the L1 Voronoi Diagram of Segments and Vlsi Applications , 1999 .

[20]  John Hershberger,et al.  Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..

[21]  Remco C. Veltkamp,et al.  A Straight Skeleton Approximating the Medial Axis , 2004, ESA.

[22]  Michael T. Goodrich,et al.  Straight-skeleton based contour interpolation , 2003, SODA '03.

[23]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1990, Comb..

[24]  Joseph S. B. Mitchell,et al.  Folding flat silhouettes and wrapping polyhedral packages: New results in computational origami , 2000, Comput. Geom..

[25]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[26]  Remco C. Veltkamp,et al.  Polygon decomposition based on the straight line skeleton , 2003, SCG '03.

[27]  G. Stamon,et al.  Angular Bisector Network, a Simplified Generalized Voronoi Diagram: Application to Processing Complex Intersections in Biomedical Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[29]  Jirí Matousek,et al.  Cutting hyperplane arrangements , 1990, SCG '90.

[30]  Petr Felkel,et al.  Straight Skeleton Implementation , 1998 .

[31]  Franz Aurenhammer,et al.  Quickest Paths, Straight Skeletons, and the City Voronoi Diagram , 2004, Discret. Comput. Geom..

[32]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[33]  Sariel Har-Peled,et al.  Constructing Planar Cuttings in Theory and Practice , 2000, SIAM J. Comput..

[34]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1996 .

[35]  Pankaj K. Agarwal Partitioning arrangements of lines I: An efficient deterministic algorithm , 1990, Discret. Comput. Geom..

[36]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[37]  Bernard Chazelle,et al.  Sublinear geometric algorithms , 2003, STOC '03.

[38]  Andrew M. Day,et al.  Automatically generating large urban environments based on the footprint data of buildings , 2003, SM '03.