Simulating continuous dynamical systems under conditions of uncertainty: the probability and the possibility approaches

Probability and possibility theory deal with different types of uncertainty. The paper discusses the role of these formalisms in the simulation of continuous dynamical systems where parameters and/or initial conditions are uncertain.

[1]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[2]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[3]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[4]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[5]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[6]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[7]  D. Dubois,et al.  Towards fuzzy differential calculus part 1: Integration of fuzzy mappings , 1982 .

[8]  D. Dubois,et al.  Towards fuzzy differential calculus part 2: Integration on fuzzy intervals , 1982 .

[9]  D. Dubois,et al.  Towards fuzzy differential calculus part 3: Differentiation , 1982 .

[10]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[11]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[12]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[13]  Osmo Kaleva Fuzzy differential equations , 1987 .

[14]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[15]  A. Neumaier Interval methods for systems of equations , 1990 .

[16]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[17]  K. Sobczyk Stochastic Differential Equations: With Applications to Physics and Engineering , 1991 .

[18]  Paul A. Fishwick,et al.  FUZZY SIMULATION: SPECIFYING AND IDENTIFYING QUALITATIVE MODELS∗ , 1991 .

[19]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[20]  Andrea Bonarini,et al.  A qualitative simulation approach for fuzzy dynamical models , 1994, TOMC.

[21]  James C. Bezdek The thirsty traveler visits Gamont: a rejoinder to "Comments on fuzzy sets-what are they and why?" , 1994, IEEE Trans. Fuzzy Syst..

[22]  R. Leland Fuzzy differential systems and Malliavin calculus , 1995 .

[23]  Philippe Smets,et al.  Imperfect Information: Imprecision and Uncertainty , 1996, Uncertainty Management in Information Systems.

[24]  Gianluca Bontempi,et al.  Qua.Si. III: a software tool for simulation of fuzzy dynamical systems , 1996 .

[25]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[26]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .