Molecular imaging of inflammation and intraplaque vasa vasorum: A step forward to identification of vulnerable plaques?

[1]  Wouter Peeters,et al.  Composition of Carotid Atherosclerotic Plaque Is Associated With Cardiovascular Outcome: A Prognostic Study , 2010, Circulation.

[2]  Paul A Dayton,et al.  Advances in Molecular Imaging with Ultrasound , 2010, Molecular imaging.

[3]  Y. Taniyama,et al.  Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice. , 2010, Journal of the American College of Cardiology.

[4]  Isabelle Tardy,et al.  BR55: A Lipopeptide-Based VEGFR2-Targeted Ultrasound Contrast Agent for Molecular Imaging of Angiogenesis , 2010, Investigative radiology.

[5]  M. Mulligan-Kehoe The vasa vasorum in diseased and nondiseased arteries. , 2010, American Journal of Physiology. Heart and Circulatory Physiology.

[6]  D. Stewart,et al.  Comparison of gene delivery techniques for therapeutic angiogenesis ultrasound-mediated destruction of carrier microbubbles versus direct intramuscular injection. , 2009, Journal of the American College of Cardiology.

[7]  E. Ritman,et al.  Low vasa vasorum densities correlate with inflammation and subintimal thickening: potential role in location--determination of atherogenesis. , 2009, Atherosclerosis.

[8]  D. Andreini,et al.  Diagnostic accuracy of coronary computed tomography angiography: a comparison between prospective and retrospective electrocardiogram triggering. , 2009, Journal of the American College of Cardiology.

[9]  Robin P Choudhury,et al.  Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[10]  S. Laurent,et al.  In Vivo Detection of Inflammation Using Pegylated Iron Oxide Particles Targeted at E-Selectin: A Multimodal Approach Using MR Imaging and EPR Spectroscopy , 2009, Investigative radiology.

[11]  Selvarajan Sandhiya,et al.  Emerging trends of nanomedicine – an overview , 2009, Fundamental & clinical pharmacology.

[12]  J. Voigt Ultrasound molecular imaging. , 2009, Methods.

[13]  M. Daemen,et al.  Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis , 2009, The Journal of pathology.

[14]  Renu Virmani,et al.  Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. , 2009, Journal of the American College of Cardiology.

[15]  N. Narula,et al.  Molecular Imaging of Matrix Metalloproteinase Expression in Atherosclerotic Plaques of Mice Deficient in Apolipoprotein E or Low-Density-Lipoprotein Receptor , 2009, Journal of Nuclear Medicine.

[16]  Pek-Lan Khong,et al.  Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. , 2009, Radiology.

[17]  David Izquierdo-Garcia,et al.  Comparison of Methods for Magnetic Resonance-Guided [18-F]Fluorodeoxyglucose Positron Emission Tomography in Human Carotid Arteries: Reproducibility, Partial Volume Correction, and Correlation Between Methods , 2009, Stroke.

[18]  D. Adam,et al.  Arterial microvessels: an early or late sign of atherosclerosis? , 2008, Journal of the American College of Cardiology.

[19]  Sanjiv S Gambhir,et al.  Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. , 2008, Radiology.

[20]  Sameer Bansilal,et al.  Atherosclerosis Inflammation Imaging with 18F-FDG PET: Carotid, Iliac, and Femoral Uptake Reproducibility, Quantification Methods, and Recommendations , 2008, Journal of Nuclear Medicine.

[21]  Michel Schneider,et al.  Molecular imaging and ultrasound-assisted drug delivery. , 2008, Journal of endourology.

[22]  Ichiro Kawahara,et al.  Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. , 2008, Neurologia medico-chirurgica.

[23]  R. Weissleder,et al.  Imaging in the era of molecular oncology , 2008, Nature.

[24]  J. Kastelein,et al.  Ultrasound imaging techniques for the evaluation of cardiovascular therapies. , 2008, European heart journal.

[25]  Mathijs Groeneweg,et al.  Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. , 2008, Journal of the American College of Cardiology.

[26]  M. Mayr,et al.  Clinical ResearchAtherosclerosis: Editorial CommentThe Paradox of Hypoxic and Oxidative Stress in Atherosclerosis⁎ , 2008 .

[27]  Alfons Verbruggen,et al.  Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. , 2008, Cardiovascular research.

[28]  Z. Fayad,et al.  Evaluation of Matrix Metalloproteinases in Atherosclerosis Using a Novel Noninvasive Imaging Approach , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[29]  Zahi A. Fayad,et al.  Imaging of atherosclerotic cardiovascular disease , 2008, Nature.

[30]  P. Ruggieri,et al.  Nephrogenic systemic fibrosis and its association with gadolinium exposure during MRI. , 2008, Cleveland Clinic journal of medicine.

[31]  D. Ribatti,et al.  Inflammatory angiogenesis in atherogenesis—a double-edged sword , 2008, Annals of medicine.

[32]  S. Neubauer,et al.  Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[33]  Amir Lerman,et al.  The dynamic vasa vasorum. , 2007, Cardiovascular research.

[34]  Masatoshi Ishibashi,et al.  The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose-positron emission tomography. , 2007, European heart journal.

[35]  J. Lindner,et al.  Molecular Imaging of Inflammation in Atherosclerosis With Targeted Ultrasound Detection of Vascular Cell Adhesion Molecule-1 , 2007, Circulation.

[36]  Alexander C Langheinrich,et al.  Vasa vasorum and atherosclerosis – Quid novi? , 2007, Thrombosis and Haemostasis.

[37]  Zahi A Fayad,et al.  Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography , 2007, Nature Medicine.

[38]  T. Imaizumi,et al.  Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. , 2007, Journal of the American College of Cardiology.

[39]  E. Kanal,et al.  Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. , 2007, Radiology.

[40]  T. Bettinger,et al.  Gene therapy progress and prospects: Ultrasound for gene transfer , 2007, Gene Therapy.

[41]  J. Jeng,et al.  Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[42]  Rolf A. Brekken,et al.  Monitoring Response to Anticancer Therapy by Targeting Microbubbles to Tumor Vasculature , 2007, Clinical Cancer Research.

[43]  Nico de Jong,et al.  Sonoporation from jetting cavitation bubbles. , 2006, Biophysical journal.

[44]  Ahmed Tawakol,et al.  In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. , 2006, Journal of the American College of Cardiology.

[45]  Masatoshi Ishibashi,et al.  Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. , 2006, Journal of the American College of Cardiology.

[46]  Takashi Kato,et al.  Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[47]  Sanjiv S. Gambhir,et al.  How molecular imaging is speeding up antiangiogenic drug development , 2006, Molecular Cancer Therapeutics.

[48]  Ralph Weissleder,et al.  Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis , 2006, Circulation.

[49]  K. Moulton Angiogenesis in atherosclerosis: gathering evidence beyond speculation , 2006, Current opinion in lipidology.

[50]  V. Fuster,et al.  MRI to detect atherosclerosis with gadolinium‐containing immunomicelles targeting the macrophage scavenger receptor , 2006, Magnetic resonance in medicine.

[51]  V. Fuster,et al.  Neovascularization in human atherosclerosis. , 2006, Current molecular medicine.

[52]  J. Gillard,et al.  Identifying Inflamed Carotid Plaques Using In Vivo USPIO-Enhanced MR Imaging to Label Plaque Macrophages , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[53]  Roland Haubner,et al.  αvβ3-integrin imaging: a new approach to characterise angiogenesis? , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[54]  Ralph Weissleder,et al.  Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer , 2006, Laboratory Investigation.

[55]  Nico de Jong,et al.  Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[56]  Martin J Graves,et al.  Identification of Culprit Lesions After Transient Ischemic Attack by Combined 18F Fluorodeoxyglucose Positron-Emission Tomography and High-Resolution Magnetic Resonance Imaging , 2005, Stroke.

[57]  Zahi A Fayad,et al.  Atherothrombosis and high-risk plaque: part I: evolving concepts. , 2005, Journal of the American College of Cardiology.

[58]  Albert J. Sinusas,et al.  Noninvasive Imaging of Angiogenesis With a 99mTc-Labeled Peptide Targeted at &agr;v&bgr;3 Integrin After Murine Hindlimb Ischemia , 2005 .

[59]  Ahmed Tawakol,et al.  Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography , 2005, Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology.

[60]  Sophie Laurent,et al.  Magnetic resonance imaging of inflammation with a specific selectin‐targeted contrast agent , 2005, Magnetic resonance in medicine.

[61]  Horst Kessler,et al.  Noninvasive Visualization of the Activated αvβ3 Integrin in Cancer Patients by Positron Emission Tomography and [18F]Galacto-RGD , 2005, PLoS medicine.

[62]  Ralph Weissleder,et al.  Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle , 2005, Circulation research.

[63]  T. Lüscher,et al.  Molecular Imaging of Atherosclerotic Plaques Using a Human Antibody Against the Extra-Domain B of Fibronectin , 2004, Circulation research.

[64]  Gieri Cathomas,et al.  Arterial Neovascularization and Inflammation in Vulnerable Patients: Early and Late Signs of Symptomatic Atherosclerosis , 2004, Circulation.

[65]  P. Weissberg,et al.  Molecular and metabolic imaging of atherosclerosis. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[66]  Juan J. Badimon,et al.  Plaque Neovascularization Is Increased in Ruptured Atherosclerotic Lesions of Human Aorta: Implications for Plaque Vulnerability , 2004, Circulation.

[67]  S. Feinstein,et al.  The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. , 2004, American journal of physiology. Heart and circulatory physiology.

[68]  A. Sinusas,et al.  Detection of Injury-Induced Vascular Remodeling by Targeting Activated &agr;vβ3 Integrin In Vivo , 2004 .

[69]  Martin J Graves,et al.  In Vivo Detection of Macrophages in Human Carotid Atheroma: Temporal Dependence of Ultrasmall Superparamagnetic Particles of Iron Oxide–Enhanced MRI , 2004, Stroke.

[70]  H. Watabe,et al.  (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[71]  D. Dione,et al.  Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. , 2004, The Journal of clinical investigation.

[72]  S. Sahoo,et al.  Nanotech approaches to drug delivery and imaging. , 2003, Drug discovery today.

[73]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[74]  E. Boerwinkle,et al.  From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. , 2003, Circulation.

[75]  G. Semenza Targeting HIF-1 for cancer therapy , 2003, Nature Reviews Cancer.

[76]  Valentin Fuster,et al.  Intravascular Modalities for Detection of Vulnerable Plaque: Current Status , 2003, Arteriosclerosis, thrombosis, and vascular biology.

[77]  Jonathan R. Lindner,et al.  Imaging Tumor Angiogenesis With Contrast Ultrasound and Microbubbles Targeted to &agr;v&bgr;3 , 2003 .

[78]  M. E. Kooi,et al.  Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging , 2003, Circulation.

[79]  David Zurakowski,et al.  Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. Naghavi,et al.  Superparamagnetic Iron Oxide–Based Method for Quantifying Recruitment of Monocytes to Mouse Atherosclerotic Lesions In Vivo: Enhancement by Tissue Necrosis Factor-&agr;, Interleukin-1&bgr;, and Interferon-&ggr; , 2003, Circulation.

[81]  V. Fuster,et al.  Neovascularization is the most powerful independent predictor for progression to disruption in high-risk atherosclerotic plaques , 2003 .

[82]  Dario Neri,et al.  Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[83]  Jonathan R. Lindner,et al.  Noninvasive Assessment of Angiogenesis by Ultrasound and Microbubbles Targeted to &agr;v-Integrins , 2003, Circulation.

[84]  G. Viale,et al.  Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. , 2002, The American journal of pathology.

[85]  J. Pickard,et al.  Imaging Atherosclerotic Plaque Inflammation With [18F]-Fluorodeoxyglucose Positron Emission Tomography , 2002, Circulation.

[86]  S. Hou,et al.  Hospital-acquired renal insufficiency. , 2002, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[87]  B Hamm,et al.  Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles , 2001, Journal of magnetic resonance imaging : JMRI.

[88]  E. Ritman,et al.  Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. , 2001, Cardiovascular Research.

[89]  R. Wahl,et al.  Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG) , 2001, Nuclear medicine communications.

[90]  J. Debatin,et al.  Magnetic Resonance Imaging of Atherosclerotic Plaque With Ultrasmall Superparamagnetic Particles of Iron Oxide in Hyperlipidemic Rabbits , 2001, Circulation.

[91]  S. Schmitz,et al.  Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. , 2000, Investigative radiology.

[92]  L. Steinman,et al.  ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging , 2000, Journal of Neuroimmunology.

[93]  R Weissleder,et al.  Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. , 2000, European journal of cancer.

[94]  D. Woolley,et al.  Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. , 1999, Human pathology.

[95]  K. Williams,et al.  Atherosclerosis--an inflammatory disease. , 1999, The New England journal of medicine.

[96]  Krause Delivery of diagnostic agents in computed tomography. , 1999, Advanced drug delivery reviews.

[97]  O. Wiklund,et al.  Evidence of hypoxic areas within the arterial wall in vivo. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[98]  D. McPherson,et al.  In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. , 1999, Journal of the American College of Cardiology.

[99]  L. Zardi,et al.  Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. , 1999, Cancer research.

[100]  P. Kubes,et al.  An Absolute Requirement for P‐Selectin in Ischemia/Reperfusion‐Induced Leukocyte Recruitment in Cremaster Muscle , 1998, Microcirculation.

[101]  Simon C Watkins,et al.  Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. , 1998, Circulation.

[102]  E L Ritman,et al.  Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. , 1998, The Journal of clinical investigation.

[103]  N de Jong,et al.  Effect of ultrasound on the release of micro-encapsulated drugs. , 1998, Ultrasonics.

[104]  J. Bischoff,et al.  E‐Selectin Is Upregulated in Proliferating Endothelial Cells In Vitro , 1997, Microcirculation.

[105]  J. Mulliken,et al.  E-selectin is present in proliferating endothelial cells in human hemangiomas. , 1996, The American journal of pathology.

[106]  C. Alpers,et al.  Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. , 1996, Circulation.

[107]  C. Alpers,et al.  αvβ3 Integrin Expression in Normal and Atherosclerotic Artery , 1995 .

[108]  C. Vlachopoulos,et al.  Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. , 1995, Circulation.

[109]  S M Schwartz,et al.  Angiogenesis in human coronary atherosclerotic plaques. , 1994, The American journal of pathology.

[110]  D. Cheresh,et al.  Requirement of vascular integrin alpha v beta 3 for angiogenesis. , 1994, Science.

[111]  M. Ferguson,et al.  Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. , 1993, The Journal of clinical investigation.

[112]  R. Weissleder,et al.  Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. , 1990, Radiology.

[113]  Richard O. Hynes,et al.  Integrins: A family of cell surface receptors , 1987, Cell.

[114]  A. Barger,et al.  Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. , 1984, The New England journal of medicine.

[115]  M. Marcus,et al.  Role of vasa vasorum in nourishment of the aortic wall. , 1981, The American journal of physiology.

[116]  E. Ritman,et al.  Segmental heterogeneity of vasa vasorum neovascularization in human coronary atherosclerosis. , 2010, JACC. Cardiovascular imaging.

[117]  P. Grayburn,et al.  Ultrasound contrast agents: balancing safety versus efficacy. , 2009, Expert opinion on drug safety.

[118]  W. Paulus,et al.  Ultrasound and microbubble-targeted delivery of therapeutic compounds: ICIN Report Project 49: Drug and gene delivery through ultrasound and microbubbles. , 2009, Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation.

[119]  A. Naylor,et al.  Carotid plaque instability and ischemic symptoms are linked to immaturity of microvessels within plaques. , 2007, Journal of vascular surgery.

[120]  R. Haubner Alphavbeta3-integrin imaging: a new approach to characterise angiogenesis? , 2006, European journal of nuclear medicine and molecular imaging.

[121]  W. Rogers,et al.  Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. , 2005, Atherosclerosis.

[122]  N. Jahanshad,et al.  Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. , 2005, Circulation.

[123]  B. D. Meijering Ultrasound and microbubble targeted delivery. Exploring the mechanism and its therapeutic potential , 2004 .

[124]  A. Sinusas,et al.  Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. , 2004, Circulation.

[125]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[126]  Jiri Sklenar,et al.  Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. , 2003, Circulation.

[127]  Alexander Petrovsky,et al.  Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. , 2002, Bioconjugate chemistry.

[128]  D. Heistad,et al.  Blood flow through new microvessels: factors that affect regrowth of vasa vasorum. , 1988, The American journal of physiology.

[129]  S. Grundy,et al.  The possible role of the arterial microcirculation in the pathogenesis of atherosclerosis. , 1980, Journal of chronic diseases.

[130]  D. Kass,et al.  Matrix Metalloproteinase Inhibition After Myocardial Infarction: A New Approach to Prevent Heart Failure? Matrix Metalloproteinases in Vascular Remodeling and Atherogenesis: The Good, the Bad, and the Ugly Matrix Metalloproteinases: Regulation and Dysregulation in the Failing Heart Matrix Metallopro , 2002 .