Superconductivity in noncentrosymmetric Mo3P single crystal

Superconductivity in single crystalline Mo3P has been investigated by the measurement of electrical resistivity, magnetic susceptibility, and specific heat capacity. Its space group is I 4-2 m with lattice parameters a = b = 9.808 4 Å and c = 4.838 2 Å. A bulk superconductivity with a critical temperature of TC = 5.6 ± 0.1 K, an upper critical field of μ 0 H C 2 = 13.7 ± 0.1 kOe, and a lower critical field of μ 0 H C 1 = 190 ± 2 Oe for ρab were confirmed. A large anisotropic behavior was discovered in the resistivity and upper critical fields. A clear upward curvature in Hc2 was observed, suggesting a multiband superconductivity in Mo3P. The value of the Ginzburg–Landau parameter κGL indicates that Mo3P is a type-II superconductor. ΔC(Tc)/γ Tc = 1.50 and 2Δ/kB Tc = 3.48 from the specific heat analyses indicate that Mo3P is a weak-coupling Bardeen–Cooper–Schrieffer superconductor with fully gapped superconductivity.

[1]  J. Zhao,et al.  Nodeless superconductivity and preserved time-reversal symmetry in the noncentrosymmetric Mo3P superconductor , 2019, Physical Review B.

[2]  A. Hillier,et al.  Type-I superconductivity in the noncentrosymmetric superconductor BeAu , 2019, Physical Review B.

[3]  M. Salamon,et al.  Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review , 2016, Reports on progress in physics. Physical Society.

[4]  Su-Yang Xu,et al.  Superconducting properties in single crystals of the topological nodal semimetal PbTaSe 2 , 2016 .

[5]  M. Lees,et al.  Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry. , 2015, Physical review letters.

[6]  J. H. Yang,et al.  Upward Curvature of the Upper Critical Field and the V-Shaped Pressure Dependence of Tc in the Noncentrosymmetric Superconductor PbTaSe2 , 2015, 1505.02232.

[7]  R. Podloucky,et al.  Synthesis, characterization, electronic structure, and phonon properties of the noncentrosymmetric superconductor LaPtSi , 2013 .

[8]  R. Cava,et al.  Anisotropic $H_{c2}$ determined up to 92 T and the signature of multi-band superconductivity in Ca$_{10}$(Pt$_{4}$As$_{8}$)((Fe$_{1-x}$Pt$_{x}$)$_{2}$As$_{2}$)$_{5}$ superconductor , 2012, 1202.5011.

[9]  A. Thamizhavel,et al.  Superconductivity in noncentrosymmetric BiPd , 2011 .

[10]  B. Rainford,et al.  Specific heat and $μ$SR study on the noncentrosymmetric superconductor LaRhSi3 , 2011, 1108.0193.

[11]  K. Shimizu,et al.  Pressure-induced superconductivity and large upper critical field in the noncentrosymmetric antiferromagnet CeIrGe 3 , 2010 .

[12]  M. Marsman,et al.  BaPtSi 3 : A noncentrosymmetric BCS-like superconductor , 2009 .

[13]  D. Christen,et al.  Very High Field Two-Band Superconductivity in LaFeAsO_0.89F_0.11 , 2008, 0804.0485.

[14]  D. Christen,et al.  Evidence for s-wave Superconductivity in Noncentrosymmetric Re3W from Magnetic Penetration Depth Measurements , 2007 .

[15]  E. Bauer,et al.  Superconductivity in the complex metallic alloy β-Al 3 Mg 2 , 2007 .

[16]  H. Harima,et al.  Pressure-induced superconductivity in CeCoGe3 without inversion symmetry , 2007 .

[17]  H. Shishido,et al.  Pressure-Induced Heavy-Fermion Superconductivity in Antiferromagnet CeIrSi3 without Inversion Symmetry , 2006 .

[18]  Y. Umeda,et al.  Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3. , 2005, Physical review letters.

[19]  K. Lee,et al.  Crystal symmetry, electron-phonon coupling, and superconducting tendencies in Li 2 Pd 3 B and Li 2 Pt 3 B , 2005, cond-mat/0507105.

[20]  M. Sigrist,et al.  Superconductivity without inversion symmetry: MnSi versus CePt3Si. , 2003, Physical review letters.

[21]  E. Bauer,et al.  Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si. , 2003, Physical review letters.

[22]  A. Gurevich,et al.  Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors , 2002, cond-mat/0212129.

[23]  R. Ribeiro,et al.  Anisotropic superconducting properties of aligned MgB(2) crystallites. , 2001, Physical review letters.

[24]  T. Yagi,et al.  Superconductivity of molybdenum phosphides prepared at high pressure , 2000 .

[25]  Y. Maeno,et al.  Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift , 1998, Nature.

[26]  Chandra,et al.  Magnetism and superconductivity in RPtSi (R=La, Ce, Nd, and Sm). , 1995, Physical review. B, Condensed matter.

[27]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[28]  K. Maki Effect of Pauli Paramagnetism on Magnetic Properties of High-Field Superconductors , 1966 .

[29]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[30]  R. Blaugher,et al.  SUPERCONDUCTING PHOSPHIDES OF THE TRANSITION METALS , 1965 .

[31]  A. Wilson The electrical conductivity of the transition metals. , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.