The quadratic B-spline finite-element method for the coupled Schrödinger–Boussinesq equations

In this paper, a quadratic B-spline finite-element method is proposed for solving the coupled Schrödinger–Boussinesq equations numerically. A semi-discrete finite-element scheme is constructed for this system. The existence and uniqueness of the numerical solutions and the convergence of the discrete scheme are discussed. Numerical results indicate that the proposed method is accurate and efficient.

[1]  Robinson,et al.  Three-dimensional strong Langmuir turbulence and wave collapse. , 1988, Physical review letters.

[2]  T. Mikkelsen,et al.  Investigation of strong turbulence in a low-. beta. plasma , 1978 .

[3]  Junkichi Satsuma,et al.  An N-Soliton Solution for the Nonlinear Schrödinger Equation Coupled to the Boussinesq Equation , 1988 .

[4]  Engui Fan,et al.  A series of exact solutions for coupled Higgs field equation and coupled Schrödinger–Boussinesq equation , 2009 .

[5]  A. S. Kingsep,et al.  Spectra of Strong Langmuir Turbulence , 1973 .

[6]  Chunping Liu Doubly periodic solutions of the coupled scalar field equations , 2005 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Joseph P. Dougherty,et al.  Waves in plasmas. , 1993 .

[9]  N. N. Rao,et al.  Coupled Langmuir and ion-acoustic waves in two-electron temperature plasmas , 1997 .

[10]  A. G. Litvak,et al.  Near-sonic Langmuir solitons , 1982 .

[11]  晃 長谷川,et al.  Plasma instabilities and nonlinear effects , 1975 .

[12]  Xiaowu Huang,et al.  On the exact soliton solutions for a class of coupled field equations , 1993 .

[13]  A. Roy Chowdhury,et al.  Normal form analysis and chaotic scenario in a Schrödinger-Boussinesq system , 2002 .

[14]  V. G. Makhankov,et al.  On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying boussinesq's equation , 1974 .

[15]  K. Mima,et al.  COUPLED NONLINEAR ELECTRON-PLASMA AND ION-ACOUSTIC WAVES , 1974 .

[16]  Bernard Bialecki,et al.  Modified Nodal Cubic Spline Collocation For Poisson's Equation , 2007, SIAM J. Numer. Anal..

[17]  Luming Zhang,et al.  The finite element method for the coupled Schrödinger–KdV equations , 2009 .

[18]  Bertil Gustafsson,et al.  Numerical Methods for Differential Equations , 2011 .

[19]  N. N. Rao,et al.  Exact solutions of coupled scalar field equations , 1989 .

[20]  P. Markowich,et al.  Numerical simulation of a generalized Zakharov system , 2004 .

[21]  T. N. Chang,et al.  B-spline-based multichannel K-matrix method for atomic photoionization , 2000 .

[22]  N. N. Rao Near-magnetosonic envelope upper-hybrid waves , 1988, Journal of Plasma Physics.

[23]  Engui Fan,et al.  An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinea , 2003 .

[24]  D. Ter Haar,et al.  Langmuir turbulence and modulational instability , 1978 .

[25]  A. Roy Chowdhury,et al.  Painléve Analysis and Backlund Transformations for Coupled Generalized Schrödinger–Boussinesq Systemfn2 , 1998 .

[26]  N. N. Rao Coupled scalar field equations for nonlinear wave modulations in dispersive media , 1996 .

[27]  Rao Theory of near-sonic envelope electromagnetic waves in magnetized plasmas. , 1988, Physical review. A, General physics.

[28]  M Panigrahy,et al.  Soliton solutions of a coupled field using the mixing exponential method , 1999 .

[29]  M. Goldman,et al.  Strong turbulence of plasma waves , 1984 .

[30]  Kim S. Bey,et al.  Discontinuous Galerkin finite element method for parabolic problems , 2006, Appl. Math. Comput..

[31]  N. N. Rao,et al.  Localized nonlinear structures of intense electromagnetic waves in two-electron-temperature electron–positron–ion plasmas , 1999 .

[32]  Kunioki Mima,et al.  Self-Modulation of High-Frequency Electric Field and Formation of Plasma Cavities , 1974 .

[33]  Hon-Wah Tam,et al.  Homoclinic Orbits for the Coupled Schrödinger–Boussinesq Equation and Coupled Higgs Equation , 2003 .

[34]  Boling Guo,et al.  Existence of the Periodic Solution for the Weakly Damped Schrödinger–Boussinesq Equation , 2001 .