Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere

[1]  L. Duponchel,et al.  Tracking hidden organic carbon in rocks using chemometrics and hyperspectral imaging , 2018, Scientific Reports.

[2]  M. Toșa,et al.  Modern diversification of the amino acid repertoire driven by oxygen , 2017, Proceedings of the National Academy of Sciences.

[3]  F. Guyot,et al.  Thermodynamic constraints on the formation of condensed carbon from serpentinization fluids , 2016 .

[4]  Aaron S. Burton,et al.  Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories , 2016, ACS central science.

[5]  Satoshi Kawata,et al.  Deep-UV biological imaging by lanthanide ion molecular protection. , 2016, Biomedical optics express.

[6]  W. Seyfried,et al.  The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes , 2015 .

[7]  H. Leroux,et al.  Formation and transformations of Fe-rich serpentines by asteroidal aqueous alteration processes: A nanoscale study of the Murray chondrite , 2015 .

[8]  J. Charlou,et al.  The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge , 2015, Astrobiology.

[9]  S. Humphris,et al.  Magnetite in seafloor serpentinite—Some like it hot , 2014 .

[10]  K. Ruiz-Mirazo,et al.  Prebiotic systems chemistry: new perspectives for the origins of life. , 2014, Chemical reviews.

[11]  B. Lagarde,et al.  Synchrotron infrared confocal microscope: Application to infrared 3D spectral imaging , 2013 .

[12]  D. Butterfield,et al.  Sources of organic nitrogen at the serpentinite‐hosted Lost City hydrothermal field , 2013, Geobiology.

[13]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[14]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[15]  N. Arndt,et al.  Processes on the Young Earth and the Habitats of Early Life , 2012 .

[16]  P. Walter,et al.  Cluster TOF-SIMS imaging of human skin remains: analysis of a South-Andean mummy sample. , 2012, Journal of mass spectrometry : JMS.

[17]  G. Barreca,et al.  Origin of Saponite-Rich Clays in A Fossil Serpentinite-Hosted Hydrothermal System in The Crustal Basement of The Hyblean Plateau (Sicily, Italy) , 2012, Clays and Clay Minerals.

[18]  B. Ménez,et al.  Life in the hydrated suboceanic mantle , 2012 .

[19]  D. Miller,et al.  Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid‐Atlantic Ridge 30°N , 2011 .

[20]  C. Williams,et al.  Shell layers of the black-lip pearl oyster Pinctada margaritifera: matching microstructure and composition. , 2011, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[21]  Jean Martínez,et al.  Asymmetric synthesis of β2-tryptophan analogues via Friedel-Crafts alkylation of indoles with a chiral nitroacrylate. , 2011, The Journal of organic chemistry.

[22]  S. Pizzarello,et al.  Abundant ammonia in primitive asteroids and the case for a possible exobiology , 2011, Proceedings of the National Academy of Sciences.

[23]  M. Glikson,et al.  Earliest Life on Earth: Habitats, Environments and Methods of Detection , 2011 .

[24]  Frank Wien,et al.  Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues , 2010, Microscopy and Microanalysis.

[25]  A. Meunier,et al.  The Fe-Rich Clay Microsystems in Basalt-Komatiite Lavas: Importance of Fe-Smectites for Pre-Biotic Molecule Catalysis During the Hadean Eon , 2010, Origins of Life and Evolution of Biospheres.

[26]  B. Nachtsheim,et al.  A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis , 2010, Beilstein journal of organic chemistry.

[27]  Daniel Zerbib,et al.  DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. , 2009, Journal of synchrotron radiation.

[28]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[29]  V. Thiel,et al.  Detection of organic biomarkers in crude oils using ToF-SIMS , 2009 .

[30]  M. Andreani,et al.  Formation of clay minerals and exhumation of lower‐crustal rocks at Atlantis Massif, Mid‐Atlantic Ridge , 2008 .

[31]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[32]  D. Kelley,et al.  Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR) , 2008 .

[33]  Deborah S. Kelley,et al.  Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field , 2008, Science.

[34]  M. Thommes,et al.  Understanding Physico-chemical Properties Of Saponite Synthetic Clays , 2008 .

[35]  M. Cotte,et al.  Identification of ritual blood in African artifacts using TOF-SIMS and synchrotron radiation microspectroscopies. , 2007, Analytical chemistry.

[36]  M. Russell The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution , 2007, Acta biotheoretica.

[37]  J. Seewald,et al.  Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. , 2007, Chemical reviews.

[38]  O. Chubar,et al.  Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL , 2006 .

[39]  M. Lilley,et al.  Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer , 2006 .

[40]  David Touboul,et al.  Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source , 2005, Journal of the American Society for Mass Spectrometry.

[41]  D. Touboul,et al.  Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. , 2005, Journal of mass spectrometry : JMS.

[42]  R. Coleman,et al.  H2-rich fluids from serpentinization: geochemical and biotic implications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Steele,et al.  Characterization of purified biomarker compounds using time of flight-secondary ion mass spectrometry (ToF-SIMS) , 2004 .

[44]  M. Vicente,et al.  Fe-saponite pillared and impregnated catalysts: I. Preparation and characterisation , 2004 .

[45]  R. Daniel,et al.  A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life , 1994, Journal of Molecular Evolution.

[46]  C. Mével Serpentinization of abyssal peridotites at mid-ocean ridges , 2003 .

[47]  A. Kearsley,et al.  Clay mineral‐organic matter relationships in the early solar system , 2002 .

[48]  D. Castner,et al.  Classification of adsorbed protein static ToF‐SIMS spectra by principal component analysis and neural networks , 2002 .

[49]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[50]  Deborah S. Kelley,et al.  An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N , 2001, Nature.

[51]  A. Steele,et al.  Time of flight secondary ion mass spectrometry (ToFSIMS) of a number of hopanoids , 2001 .

[52]  M. Schoonen,et al.  Nitrogen reduction under hydrothermal vent conditions: implications for the prebiotic synthesis of C-H-O-N compounds. , 2001, Astrobiology.

[53]  G. Cody,et al.  Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. , 2000, Science.

[54]  S. Derenne,et al.  Protection of organic matter by mineral matrix in a Cenomanian black shale , 2000 .

[55]  J. Rullkötter,et al.  Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria , 1998 .

[56]  G. Cody,et al.  Abiotic nitrogen reduction on the early Earth , 1998, Nature.

[57]  J. Amend,et al.  Energetics of amino acid synthesis in hydrothermal ecosystems. , 1998, Science.

[58]  M. Diem,et al.  Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix. , 1998, Biospectroscopy.

[59]  W. Jones,et al.  Characterization and catalytic properties of a saponite clay modified by acid activation , 1997, Clay Minerals.

[60]  M. Kantam,et al.  Iron pillared clays — efficient catalysts for Friedel–Crafts reactions , 1997 .

[61]  R. Goldberg,et al.  An equilibrium and calorimetric investigation of the hydrolysis of L-tryptophan to (indole + pyruvate + ammonia) , 1994 .

[62]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species , 1990 .

[63]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[64]  T. Bártfai,et al.  THE STRUCTURE AND CONFORMATION OF TRYPTOPHAN IN THE CRYSTAL OF THE PURE RACEMIC COMPOUND AND THE HYDROGEN OXALATE , 1981 .