Targeting Predictors Via Partial Distance Correlation With Applications to Financial Forecasting

High dimensional time series data sets are becoming increasingly common in various fields of economics and finance. Given the ubiquity of time series data, it is crucial to develop efficient variab...

[1]  Jianqing Fan,et al.  Sure independence screening in generalized linear models with NP-dimensionality , 2009, The Annals of Statistics.

[2]  Dag Tjøstheim,et al.  Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.

[3]  J. Lafferty,et al.  Sparse additive models , 2007, 0711.4555.

[4]  Tuan Pham,et al.  Some mixing properties of time series models , 1985 .

[5]  Serena Ng,et al.  Boosting diffusion indices , 2009 .

[6]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[7]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[8]  J. Stock,et al.  Macroeconomic Forecasting Using Diffusion Indexes , 2002 .

[9]  O. Linton,et al.  Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series , 2015 .

[10]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[11]  J. Davidson Stochastic Limit Theory: An Introduction for Econometricians , 1994 .

[12]  J. Davidson Stochastic Limit Theory , 1994 .

[13]  W Y Zhang,et al.  Discussion on `Sure independence screening for ultra-high dimensional feature space' by Fan, J and Lv, J. , 2008 .

[14]  Maria L. Rizzo,et al.  Partial Distance Correlation with Methods for Dissimilarities , 2013, 1310.2926.

[15]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[16]  W. Wu An asymptotic theory for sample covariances of Bernoulli shifts , 2009 .

[17]  Yi Liu,et al.  Model-free feature screening for ultrahigh-dimensional data conditional on some variables , 2018 .

[18]  W. Wu,et al.  Asymptotic theory for stationary processes , 2011 .

[19]  Ali Shojaie,et al.  Network granger causality with inherent grouping structure , 2012, J. Mach. Learn. Res..

[20]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[21]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[22]  Liu Jingyuan,et al.  A selective overview of feature screening for ultrahigh-dimensional data , 2015, Science China Mathematics.

[23]  Jianqing Fan,et al.  Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Varying Coefficient Models , 2014, Journal of the American Statistical Association.

[24]  Runze Li,et al.  Variable Screening via Quantile Partial Correlation , 2017, Journal of the American Statistical Association.

[25]  Todd E. Clark,et al.  Tests of Equal Forecast Accuracy and Encompassing for Nested Models , 1999 .

[26]  Bryan T. Kelly,et al.  Autoencoder Asset Pricing Models , 2019, Journal of Econometrics.

[27]  Han Xiao,et al.  Covariance matrix estimation for stationary time series , 2011, 1105.4563.

[28]  Runze Li,et al.  Feature Screening via Distance Correlation Learning , 2012, Journal of the American Statistical Association.

[29]  Laurent Callot,et al.  Sharp Threshold Detection Based on Sup-Norm Error Rates in High-Dimensional Models , 2015, 1502.03035.

[30]  W. Wu,et al.  Nonlinear system theory: another look at dependence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[32]  Kashif Yousuf Variable Screening for High Dimensional Time Series , 2017, 1705.07950.

[33]  Empirical Asset Pricing via Machine Learning , 2020 .

[34]  L. Kilian,et al.  Structural Vector Autoregressive Analysis , 2017 .

[35]  Jianqing Fan,et al.  Sufficient Forecasting Using Factor Models , 2014, Journal of econometrics.

[36]  Yang Feng,et al.  Nonparametric independence screening via favored smoothing bandwidth , 2017, Journal of Statistical Planning and Inference.

[37]  Lester Melie-García,et al.  Estimating brain functional connectivity with sparse multivariate autoregression , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Xueqin Wang,et al.  Sure Independence Screening Adjusted for Confounding Covariates with Ultrahigh-dimensional Data , 2017 .

[39]  Bryan T. Kelly,et al.  Market Expectations in the Cross-Section of Present Values: Market Expectations in the Cross-Section of Present Values , 2013 .

[40]  Hui Zou,et al.  The fused Kolmogorov filter: A nonparametric model-free screening method , 2014, 1403.7701.

[41]  Bryan T. Kelly,et al.  The Three-Pass Regression Filter: A New Approach to Forecasting Using Many Predictors , 2014 .

[42]  A. Kock,et al.  Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.

[43]  Konstantinos Fokianos,et al.  Consistent Testing for Pairwise Dependence in Time Series , 2017, Technometrics.

[44]  J. Bai,et al.  Forecasting economic time series using targeted predictors , 2008 .

[45]  G. Michailidis,et al.  Regularized estimation in sparse high-dimensional time series models , 2013, 1311.4175.

[46]  Yang Feng,et al.  Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models , 2009, Journal of the American Statistical Association.

[47]  Zhou Zhou Measuring nonlinear dependence in time‐series, a distance correlation approach , 2012 .

[48]  Heping Zhang,et al.  Conditional Distance Correlation , 2015, Journal of the American Statistical Association.

[49]  Wei Zhong,et al.  A selective overview of feature screening for ultrahigh-dimensional data , 2015 .

[50]  Jianqing Fan,et al.  Conditional Sure Independence Screening , 2012, Journal of the American Statistical Association.

[51]  Y. Wu,et al.  Performance bounds for parameter estimates of high-dimensional linear models with correlated errors , 2016 .

[52]  Serena Ng,et al.  Boosting High Dimensional Predictive Regressions with Time Varying Parameters , 2019, 1910.03109.

[53]  R. Tibshirani,et al.  Prediction by Supervised Principal Components , 2006 .

[54]  Xingye Qiao,et al.  Regularization after retention in ultrahigh dimensional linear regression models , 2013, 1311.5625.

[55]  Timo Teräsvirta,et al.  Modelling nonlinear economic time series , 2010 .

[56]  Zudi Lu ON THE GEOMETRIC ERGODICITY OF A NON-LINEAR AUTOREGRESSIVE MODEL WITH AN AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC TERM , 1998 .

[57]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .