Unified bijections for maps with prescribed degrees and girth
暂无分享,去创建一个
[1] F. Chapoton,et al. Sur le nombre d'intervalles dans les treillis de Tamari , 2006 .
[2] P. Francesco,et al. Census of planar maps: From the one-matrix model solution to a combinatorial proof , 2002, cond-mat/0207682.
[3] Dominique Poulalhon,et al. A bijection for triangulations of a polygon with interior points and multiple edges , 2003, Theor. Comput. Sci..
[4] Éric Fusy,et al. Dissections and trees, with applications to optimal mesh encoding and to random sampling , 2005, SODA '05.
[5] W. T. Tutte. A Census of Slicings , 1962, Canadian Journal of Mathematics.
[6] Éric Fusy,et al. Transversal structures on triangulations: A combinatorial study and straight-line drawings , 2006, Discret. Math..
[7] Mireille Bousquet-Mélou,et al. Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.
[8] D. Jackson,et al. A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus , 1990 .
[9] T. Walsh,et al. Counting rooted maps by genus III: Nonseparable maps , 1975 .
[10] Walter Schnyder,et al. Embedding planar graphs on the grid , 1990, SODA '90.
[11] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.
[12] Guillaume Chapuy,et al. A bijection for covered maps, or a shortcut between Harer-Zagierʼs and Jacksonʼs formulas , 2011, J. Comb. Theory, Ser. A.
[13] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..
[14] D. Arquès. Rooted planar maps are well labeled trees , 1986 .
[15] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[16] Dominique Poulalhon,et al. Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.
[17] Gilles Schaeffer,et al. The degree distribution in bipartite planar maps: applications to the Ising model , 2002 .
[18] Éric Fusy,et al. A bijection for triangulations, quadrangulations, pentagulations, etc , 2010, J. Comb. Theory, Ser. A.
[19] Gilles Schaeer,et al. Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .
[20] R. Cori,et al. Planar Maps are Well Labeled Trees , 1981, Canadian Journal of Mathematics.
[21] J. Bouttier,et al. Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model , 2007, math/0702097.
[22] G. Parisi,et al. Planar diagrams , 1978 .
[23] T. Walsh,et al. Counting rooted maps by genus II , 1972 .
[24] Nicolas Bonichon,et al. Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.
[25] Didier Arquès. Les hypercartes planaires sont des arbres tres bien etiquetes , 1986, Discret. Math..
[26] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[27] Gilles Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires , 1998 .
[28] Olivier Bernardi,et al. Parenthesis , 2020, X—The Problem of the Negro as a Problem for Thought.
[29] Éric Fusy,et al. Schnyder Decompositions for Regular Plane Graphs and Application to Drawing , 2011, Algorithmica.
[30] Edward A. Bender,et al. The Number of Degree-Restricted Rooted Maps on the Sphere , 1994, SIAM J. Discret. Math..