TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES

We present rest-frame optical spectra for a sample of nine low-mass star-forming galaxies in the redshift range 1.5 < z < 3 which are gravitationally lensed by foreground clusters. We used Triplespec, an echelle spectrograph at the Palomar 200 inch telescope that is very effective for this purpose as it samples the entire near-infrared spectrum simultaneously. By measuring the flux of nebular emission lines, we derive gas-phase metallicities and star formation rates, and by fitting the optical to infrared spectral energy distributions we obtain stellar masses. Taking advantage of the high magnification due to strong lensing, we are able to probe the physical properties of galaxies with stellar masses in the range 7.8 < log M/M☉ < 9.4 whose star formation rates are similar to those of typical star-forming galaxies in the local universe. We compare our results with the locally determined relation between stellar mass, gas metallicity, and star formation rate. Our data are in excellent agreement with this relation, with an average offset 〈Δlog (O/H)〉 = 0.01 ± 0.08, suggesting a universal relationship. Remarkably, the scatter around the fundamental metallicity relation is only 0.24 dex, smaller than that observed locally at the same stellar masses, which may provide an important additional constraint for galaxy evolution models.

[1]  K. Finlator,et al.  THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT , 2013, 1304.4239.

[2]  James S. Dunlop,et al.  The physics of the fundamental metallicity relation , 2012, 1202.4770.

[3]  Hawaii,et al.  THE METALLICITY EVOLUTION OF STAR-FORMING GALAXIES FROM REDSHIFT 0 TO 3: COMBINING MAGNITUDE-LIMITED SURVEY WITH GRAVITATIONAL LENSING , 2012, 1211.6423.

[4]  R. Maiolino,et al.  Scaling relations of metallicity, stellar mass and star formation rate in metal‐poor starbursts – I. A Fundamental Plane , 2012, 1209.1100.

[5]  J. Hjorth,et al.  The low-mass end of the fundamental relation for gravitationally lensed star-forming galaxies at 1 < z < 6† , 2012, 1209.0767.

[6]  L. Kewley,et al.  A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS , 2012, 1207.5509.

[7]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[8]  L. Kewley,et al.  THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS–METALLICITY RELATION , 2012, 1203.0558.

[9]  J. Rigby,et al.  CONSTRAINTS ON THE LOW-MASS END OF THE MASS–METALLICITY RELATION AT z = 1–2 FROM LENSED GALAXIES , 2012, 1202.5267.

[10]  J. Kneib,et al.  Strong lensing by a node of the cosmic web The core of MACS J0717.5+3745 at z=0.55 , 2011, 1109.3301.

[11]  J. Rigby,et al.  STELLAR POPULATIONS OF HIGHLY MAGNIFIED LENSED GALAXIES: YOUNG STARBURSTS AT z ∼ 2 , 2011, 1110.2833.

[12]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[13]  Jordi Cepa,et al.  ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.

[14]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[15]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[16]  J. Rigby,et al.  THE PHYSICAL CONDITIONS OF A LENSED STAR-FORMING GALAXY AT z = 1.7 , 2011, 1102.2441.

[17]  T. Treu,et al.  THE DARK MATTER DISTRIBUTION IN A383: EVIDENCE FOR A SHALLOW DENSITY CUSP FROM IMPROVED LENSING, STELLAR KINEMATIC, AND X-RAY DATA , 2011, 1101.3553.

[18]  L. Kewley,et al.  THE MASS–METALLICITY AND LUMINOSITY–METALLICITY RELATIONS FROM DEEP2 AT z ∼ 0.8 , 2010, 1006.4877.

[19]  M. Swinbank,et al.  The emission line properties of gravitationally lensed 1.5 < z < 5 galaxies , 2010, 1011.6413.

[20]  F. Mannucci,et al.  The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.

[21]  D. Coe,et al.  A HIGH-RESOLUTION MASS MAP OF GALAXY CLUSTER SUBSTRUCTURE: LensPerfect ANALYSIS OF A1689 , 2010 .

[22]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[23]  M. S'anchez-Portal,et al.  A fundamental plane for field star-forming galaxies , 2010, 1005.0509.

[24]  D. Coe,et al.  The Highest Resolution Mass Map of Galaxy Cluster Substructure To Date Without Assuming Light Traces Mass: LensPerfect Analysis of Abell 1689 , 2010, 1005.0398.

[25]  J. Kneib,et al.  LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z= 0.2 , 2009, 0911.3302.

[26]  Johan Richard,et al.  Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.

[27]  P. Marshall,et al.  THE DISTRIBUTION OF DARK MATTER OVER THREE DECADES IN RADIUS IN THE LENSING CLUSTER ABELL 611 , 2009, 0909.3527.

[28]  D. Tucker,et al.  REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.

[29]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[30]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[31]  F. Mannucci,et al.  LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.

[32]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[33]  J. Kneib,et al.  Keck spectroscopic survey of strongly lensed galaxies in Abell 1703: further evidence of a relaxed, unimodal cluster , 2009, 0901.0427.

[34]  Frantz Martinache,et al.  The performance of TripleSpec at Palomar , 2008, Astronomical Telescopes + Instrumentation.

[35]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[36]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[37]  A. McConnachie,et al.  Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.

[38]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[39]  K. Tassis,et al.  Scaling Relations of Dwarf Galaxies without Supernova-driven Winds , 2006, Proceedings of the International Astronomical Union.

[40]  P. P. van der Werf,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[41]  Romeel Dav'eBenjamin D. Oppenheimer The enrichment history of baryons in the Universe , 2006, astro-ph/0608268.

[42]  J. Kneib,et al.  Constraining the population of 6 < z < 10 star-forming galaxies with deep near-IR images of lensing clusters , 2006, astro-ph/0606134.

[43]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[44]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[45]  A. Coil,et al.  Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.

[46]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[47]  Jia-Sheng Huang,et al.  Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.

[48]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[49]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[50]  W. Vacca,et al.  Nonlinearity Corrections and Statistical Uncertainties Associated with Near‐Infrared Arrays , 2004, astro-ph/0401379.

[51]  Simon D. M. White,et al.  Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.

[52]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[53]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[54]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[55]  J. Brinkmann,et al.  The Host Galaxies of AGN , 2003, astro-ph/0304239.

[56]  D. Garnett The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.

[57]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[58]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[59]  L. Kewley,et al.  Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.

[60]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[61]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[62]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[63]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[64]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[65]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[66]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[67]  D. Osterbrock Active Galactic Nuclei a , 1984 .

[68]  G. Neugebauer,et al.  Infrared standard stars , 1982 .

[69]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[70]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[71]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .