TESTING THE UNIVERSALITY OF THE FUNDAMENTAL METALLICITY RELATION AT HIGH REDSHIFT USING LOW-MASS GRAVITATIONALLY LENSED GALAXIES
暂无分享,去创建一个
J. Richard | S. Belli | T. Jones | R. Ellis
[1] K. Finlator,et al. THE METALLICITY EVOLUTION OF LOW-MASS GALAXIES: NEW CONSTRAINTS AT INTERMEDIATE REDSHIFT , 2013, 1304.4239.
[2] James S. Dunlop,et al. The physics of the fundamental metallicity relation , 2012, 1202.4770.
[3] Hawaii,et al. THE METALLICITY EVOLUTION OF STAR-FORMING GALAXIES FROM REDSHIFT 0 TO 3: COMBINING MAGNITUDE-LIMITED SURVEY WITH GRAVITATIONAL LENSING , 2012, 1211.6423.
[4] R. Maiolino,et al. Scaling relations of metallicity, stellar mass and star formation rate in metal‐poor starbursts – I. A Fundamental Plane , 2012, 1209.1100.
[5] J. Hjorth,et al. The low-mass end of the fundamental relation for gravitationally lensed star-forming galaxies at 1 < z < 6† , 2012, 1209.0767.
[6] L. Kewley,et al. A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS , 2012, 1207.5509.
[7] G. Brammer,et al. THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.
[8] L. Kewley,et al. THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS–METALLICITY RELATION , 2012, 1203.0558.
[9] J. Rigby,et al. CONSTRAINTS ON THE LOW-MASS END OF THE MASS–METALLICITY RELATION AT z = 1–2 FROM LENSED GALAXIES , 2012, 1202.5267.
[10] J. Kneib,et al. Strong lensing by a node of the cosmic web The core of MACS J0717.5+3745 at z=0.55 , 2011, 1109.3301.
[11] J. Rigby,et al. STELLAR POPULATIONS OF HIGHLY MAGNIFIED LENSED GALAXIES: YOUNG STARBURSTS AT z ∼ 2 , 2011, 1110.2833.
[12] G. Kauffmann,et al. The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.
[13] Jordi Cepa,et al. ON STAR FORMATION RATES AND STAR FORMATION HISTORIES OF GALAXIES OUT TO z ∼ 3 , 2011, 1106.5502.
[14] K. Finlator,et al. Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.
[15] K. Finlator,et al. Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.
[16] J. Rigby,et al. THE PHYSICAL CONDITIONS OF A LENSED STAR-FORMING GALAXY AT z = 1.7 , 2011, 1102.2441.
[17] T. Treu,et al. THE DARK MATTER DISTRIBUTION IN A383: EVIDENCE FOR A SHALLOW DENSITY CUSP FROM IMPROVED LENSING, STELLAR KINEMATIC, AND X-RAY DATA , 2011, 1101.3553.
[18] L. Kewley,et al. THE MASS–METALLICITY AND LUMINOSITY–METALLICITY RELATIONS FROM DEEP2 AT z ∼ 0.8 , 2010, 1006.4877.
[19] M. Swinbank,et al. The emission line properties of gravitationally lensed 1.5 < z < 5 galaxies , 2010, 1011.6413.
[20] F. Mannucci,et al. The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies , 2010, 1011.4506.
[21] D. Coe,et al. A HIGH-RESOLUTION MASS MAP OF GALAXY CLUSTER SUBSTRUCTURE: LensPerfect ANALYSIS OF A1689 , 2010 .
[22] C. Steidel,et al. PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.
[23] M. S'anchez-Portal,et al. A fundamental plane for field star-forming galaxies , 2010, 1005.0509.
[24] D. Coe,et al. The Highest Resolution Mass Map of Galaxy Cluster Substructure To Date Without Assuming Light Traces Mass: LensPerfect Analysis of Abell 1689 , 2010, 1005.0398.
[25] J. Kneib,et al. LoCuSS: first results from strong-lensing analysis of 20 massive galaxy clusters at z= 0.2 , 2009, 0911.3302.
[26] Johan Richard,et al. Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.
[27] P. Marshall,et al. THE DISTRIBUTION OF DARK MATTER OVER THREE DECADES IN RADIUS IN THE LENSING CLUSTER ABELL 611 , 2009, 0909.3527.
[28] D. Tucker,et al. REST-FRAME OPTICAL SPECTRA OF THREE STRONGLY LENSED GALAXIES AT z ∼ 2 , 2009, 0906.2197.
[29] Garth D. Illingworth,et al. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.
[30] Shy Genel,et al. THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.
[31] F. Mannucci,et al. LSD: Lyman-break galaxies Stellar populations and Dynamics – I. Mass, metallicity and gas at z∼ 3.1 , 2009, 0902.2398.
[32] James E. Larkin,et al. THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.
[33] J. Kneib,et al. Keck spectroscopic survey of strongly lensed galaxies in Abell 1703: further evidence of a relaxed, unimodal cluster , 2009, 0901.0427.
[34] Frantz Martinache,et al. The performance of TripleSpec at Palomar , 2008, Astronomical Telescopes + Instrumentation.
[35] L. Kewley,et al. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.
[36] A. Cimatti,et al. NICMOS measurements of the near-infrared background , 2007, 0712.2880.
[37] A. McConnachie,et al. Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size , 2007, 0711.4833.
[38] R. Davé,et al. The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.
[39] K. Tassis,et al. Scaling Relations of Dwarf Galaxies without Supernova-driven Winds , 2006, Proceedings of the International Astronomical Union.
[40] P. P. van der Werf,et al. What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.
[41] Romeel Dav'eBenjamin D. Oppenheimer. The enrichment history of baryons in the Universe , 2006, astro-ph/0608268.
[42] J. Kneib,et al. Constraining the population of 6 < z < 10 star-forming galaxies with deep near-IR images of lensing clusters , 2006, astro-ph/0606134.
[43] C. Steidel,et al. Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.
[44] C. Steidel,et al. The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.
[45] A. Coil,et al. Chemical Abundances of DEEP2 Star-forming Galaxies at z~1.0-1.5 , 2005, astro-ph/0509102.
[46] H.-W. Chen,et al. ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .
[47] Jia-Sheng Huang,et al. Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z ~ 2: Stellar Masses and Stellar Populations , 2005, astro-ph/0503485.
[48] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[49] John T. Rayner,et al. Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .
[50] W. Vacca,et al. Nonlinearity Corrections and Statistical Uncertainties Associated with Near‐Infrared Arrays , 2004, astro-ph/0401379.
[51] Simon D. M. White,et al. Chemical enrichment of the intracluster and intergalactic medium in a hierarchical galaxy formation model , 2003, astro-ph/0310268.
[52] Timothy M. Heckman,et al. The host galaxies of active galactic nuclei , 2003 .
[53] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[54] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[55] J. Brinkmann,et al. The Host Galaxies of AGN , 2003, astro-ph/0304239.
[56] D. Garnett. The Luminosity-Metallicity Relation, Effective Yields, and Metal Loss in Spiral and Irregular Galaxies , 2002, astro-ph/0209012.
[57] L. Ho,et al. Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.
[58] M. Cappellari. Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.
[59] L. Kewley,et al. Theoretical Modeling of Starburst Galaxies , 2001, astro-ph/0106324.
[60] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[61] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .
[62] Jr.,et al. The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.
[63] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[64] L. Cowie,et al. New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.
[65] A. Kinney,et al. Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .
[66] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .
[67] D. Osterbrock. Active Galactic Nuclei a , 1984 .
[68] G. Neugebauer,et al. Infrared standard stars , 1982 .
[69] J. Baldwin,et al. ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .
[70] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae , 1976 .
[71] R. Larson. Effects of Supernovae on the Early Evolution of Galaxies , 1974 .