Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
暂无分享,去创建一个
Anders Hagfeldt | Antonio Abate | Michael Grätzel | Konrad Domanski | Michael Saliba | Shaik M. Zakeeruddin | Juan-Pablo Correa-Baena | Amita Ummadisingu | M. Grätzel | A. Hagfeldt | Amita Ummadisingu | Juan‐Pablo Correa‐Baena | Michael Saliba | A. Abate | S. Zakeeruddin | W. Tress | Konrad Domanski | Taisuke Matsui | Ji-Youn Seo | Taisuke Matsui | Wolfgang R. Tress | Ji‐Youn Seo
[1] Henk J. Bolink,et al. Radiative efficiency of lead iodide based perovskite solar cells , 2014, Scientific Reports.
[2] S. Zakeeruddin,et al. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.
[3] Uwe Rau,et al. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .
[4] R. T. Ross,et al. Some Thermodynamics of Photochemical Systems , 1967 .
[5] Mohammad Khaja Nazeeruddin,et al. Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .
[6] M. Grätzel,et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.
[7] J. Teuscher,et al. Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange , 2015 .
[8] J. Berry,et al. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .
[9] F. Giordano,et al. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.
[10] Sung Min Cho,et al. Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .
[11] Bernd Rech,et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.
[12] D. Trots,et al. High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .
[13] Xionggang Lu,et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.
[14] Jin Young Kim,et al. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .
[15] F. Giordano,et al. Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency , 2016, Advanced Energy Materials.
[16] H. Fan,et al. Recent Advances in Improving the Stability of Perovskite Solar Cells , 2016 .
[17] F. Giustino,et al. Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.
[18] Michael Grätzel,et al. Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .
[19] Peng Gao,et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.
[20] Ye Chen,et al. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).
[21] J. Noh,et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.
[22] D. Mitzi,et al. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH2CH=NH2SnI3and Related Systems , 1997 .
[23] Anthony K. Cheetham,et al. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .
[24] D. Weber. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .
[25] Yaoguang Rong,et al. Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .
[26] Ursula Rothlisberger,et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .
[27] Richard H. Friend,et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.
[28] Shahzad Ahmad,et al. Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques , 2014 .
[29] Anders Hagfeldt,et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.
[30] Martin A. Green,et al. Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .
[31] Robert P. H. Chang,et al. Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.
[32] Feng Gao,et al. Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.
[33] H. L. Wells. Über die Cäsium‐ und Kalium‐Bleihalogenide , 1893 .
[34] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[35] H. Bolink,et al. Efficient photovoltaic and electroluminescent perovskite devices. , 2015, Chemical communications.
[36] Peng Gao,et al. A molecularly engineered hole-transporting material for efficient perovskite solar cells , 2016, Nature Energy.
[37] Young Chan Kim,et al. Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.
[38] Anders Hagfeldt,et al. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.
[39] Anders Hagfeldt,et al. Unbroken Perovskite: Interplay of Morphology, Electro‐optical Properties, and Ionic Movement , 2016, Advanced materials.