Reversibility and quasi-homogeneous normal forms of vector fields

Abstract This paper uses tools in quasi-homogeneous normal form theory to discuss certain aspects of reversible vector fields around an equilibrium point. Our main result provides an algorithm, via Lie Triangle, that detects the non-reversibility of vector fields. That is, it is possible to decide whether a planar center is not reversible. Some of the theory developed is also applied to get further results on nilpotent and degenerate polynomial vector fields. We find several families of nilpotent centers which are non-reversible.

[1]  Claude Lefort,et al.  Reversibility , 1985, Telos.

[2]  E. Freire,et al.  Hypernormal Forms for Equilibria of Vector Fields. Codimension One Linear Degeneracies , 1999 .

[3]  E. Freire,et al.  An Algorithm for Computing Quasi-Homogeneous Formal Normal Forms under Equivalence , 2004 .

[4]  M. Levi,et al.  Dynamical systems approaches to nonlinear problems in systems and circuits , 1988 .

[5]  A. Gasull,et al.  Center Problem for Several Differential Equations via Cherkas' Method☆ , 1998 .

[6]  S. Ludkovsky Topological transformation groups of manifolds over non-Archimedean fields, their representations, and quasi-invariant measures. I , 2007 .

[7]  H. Poincaré,et al.  Sur les courbes définies par les équations différentielles(III) , 1885 .

[8]  Dominique Cerveau,et al.  Sur les feuilletages analytiques rels et le problme du centre , 1996 .

[9]  Jaume Giné,et al.  Integrability of Centers Perturbed by Quasi-Homogeneous Polynomials , 1997 .

[10]  H Zoladek On a certain generalization of Bautin's theorem , 1994 .

[11]  H. Zoladek,et al.  The Analytic and Formal Normal Form for the Nilpotent Singularity , 2002 .

[12]  H. Zoladek,et al.  Quadratic Systems with Center and Their Perturbations , 1994 .

[13]  H. Zoladek,et al.  The classification of reversible cubic systems with center , 1994 .

[14]  E. Gamero,et al.  The integrability problem for a class of planar systems , 2009 .

[15]  R. Moussu,et al.  Réversibilité et classification des centres nilpotents , 1994 .

[16]  Jaume Giné,et al.  Local analytic integrability for nilpotent centers , 2003, Ergodic Theory and Dynamical Systems.

[17]  Jaume Llibre,et al.  Darboux Integrability and Reversible Quadratic Vector Fields , 2005 .

[18]  E. Freire,et al.  Quasi-homogeneous normal forms , 2003 .

[19]  A. D. Briuno,et al.  Local methods in nonlinear differential equations , 1989 .

[20]  J. Lamb,et al.  Time-reversal symmetry in dynamical systems: a survey , 1998 .

[21]  Marco Antonio Teixeira,et al.  The Center-Focus Problem and Reversibility , 2001 .

[22]  N. N. Bautin,et al.  On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .

[23]  Henri Poincaré,et al.  Œuvres de Henri Poincaré , 1965 .