Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis

Complex interactions between phosphorus and zeolites are related to several promotional and poisoning effects in zeolite catalysis.

[1]  B. Weckhuysen,et al.  Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability. , 2014, Chemistry.

[2]  B. Weckhuysen,et al.  Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy. , 2014, Journal of the American Chemical Society.

[3]  A. Beale,et al.  Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems , 2014 .

[4]  C. Chizallet,et al.  Challenges on Molecular Aspects of Dealumination and Desilication of Zeolites , 2014 .

[5]  B. Weckhuysen,et al.  Local silico-aluminophosphate interfaces within phosphated H-ZSM-5 zeolites. , 2014, Physical chemistry chemical physics : PCCP.

[6]  George W. Huber,et al.  Catalytic fast pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal , 2014 .

[7]  Louise Olsson,et al.  Chemical deactivation of Fe-BEA as NH3-SCR catalyst—Effect of phosphorous , 2014 .

[8]  Kohei Kubo,et al.  Effect of steaming on acidity and catalytic performance of H-ZSM-5 and P/H-ZSM-5 as naphtha to olefin catalysts , 2014 .

[9]  Minhua Zhang,et al.  Density Functional Theory study of the structural and electronic properties of H3PO4/ZSM-5 , 2014 .

[10]  A. Veen,et al.  Reversibility of the Modification of HZSM-5 with Phosphate Anions , 2014 .

[11]  Shengfu Ji,et al.  Preparation of phosphorus-modified PITQ-13 catalysts and their performance in 1-butene catalytic cracking , 2014 .

[12]  A. Halgeri,et al.  Shape-selective catalysis by phosphate modified ZSM-5: Generation of new acid sites with pore narrowing , 2014 .

[13]  B. Weckhuysen,et al.  Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  F. Jentoft,et al.  Identification of carbonaceous deposits formed on H-mordenite during alkane isomerization , 2013 .

[15]  E. Hensen,et al.  Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite , 2013 .

[16]  N. Amin,et al.  A perspective on catalytic conversion of glycerol to olefins. , 2013 .

[17]  O. Swang,et al.  Mechanistic Comparison of the Dealumination in SSZ-13 and the Desilication in SAPO-34 , 2013 .

[18]  A. Corma,et al.  IM-5 zeolite for steam catalytic cracking of naphtha to produce propene and ethene. An alternative to ZSM-5 zeolite , 2013 .

[19]  C. A. Henriques,et al.  Application of ferrierite zeolite in high-olefin catalytic cracking , 2013 .

[20]  Yijin Liu,et al.  3D nanoscale chemical imaging of the distribution of aluminum coordination environments in zeolites with soft X-ray microscopy. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Bert M. Weckhuysen,et al.  Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx , 2013 .

[22]  Yandan Wang,et al.  Effect of phosphorus modified USY on coupled hydrogenation and ring opening performance of NiW/USY + Al2O3 hydro-upgrading catalyst , 2013 .

[23]  Q. Wei,et al.  Performance of Zr- and P-modified USY-based catalyst in hydrocracking of vacuum gas oil , 2013 .

[24]  M. Boltz,et al.  Conversion of methanol into light olefins over ZSM-5 zeolite: Strategy to enhance propene selectivity , 2012 .

[25]  Landong Li,et al.  Methanol‐to‐Olefin Conversion Catalyzed by Low‐Silica AlPO‐34 with Traces of Brønsted Acid Sites: Combined Catalytic and Spectroscopic Investigations , 2012 .

[26]  Yandan Wang,et al.  The combined modification of Ti and P to USY and its function in hydrogenation and ring opening reaction of tetralin , 2012 .

[27]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[28]  F. Bager,et al.  Improved Propene Yields from Catalytic Cracking The Potential of Medium-Pore Zeolites as Additives , 2012 .

[29]  T. Fujitani,et al.  Effects of added phosphorus on conversion of ethanol to propylene over ZSM-5 catalysts , 2012 .

[30]  A. Corma,et al.  Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphtha for production of propene and ethene , 2012 .

[31]  B. Weckhuysen,et al.  X-ray imaging of zeolite particles at the nanoscale: influence of steaming on the state of aluminum and the methanol-to-olefin reaction. , 2012, Angewandte Chemie.

[32]  Landong Li,et al.  Phosphorus modified HMCM-22: Characterization and catalytic application in methanol-to-hydrocarbons conversion , 2012 .

[33]  O. Swang,et al.  Detailed reaction paths for zeolite dealumination and desilication from density functional calculations. , 2012, Angewandte Chemie.

[34]  O. Terasaki,et al.  The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: the influence of the zeolite architecture. , 2011, Chemistry.

[35]  Anmin Zheng,et al.  Bronsted/Lewis Acid Synergy in H-ZSM-5 and H-MOR Zeolites Studied by (1)H and (27)Al DQ-MAS Solid-State NMR Spectroscopy , 2011 .

[36]  W. Reschetilowski,et al.  Spectroscopic study of phosphorus modified H-ZSM-5 , 2011 .

[37]  Y. Ide,et al.  Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene , 2011 .

[38]  Ramin Karimzadeh,et al.  Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review , 2011 .

[39]  Yong-ki Park,et al.  Steaming and washing effect of P/HZSM-5 in catalytic cracking of naphtha , 2011 .

[40]  J. Lercher,et al.  Impact of Forming and Modification with Phosphoric Acid on the Acid Sites of HZSM-5 , 2010 .

[41]  Atsushi Takahashi,et al.  Phosphorus-modified ZSM-5 for conversion of ethanol to propylene , 2010 .

[42]  Zhang Bin,et al.  Highly efficient synthesis of dimethyl ether from syngas over the admixed catalyst of CuO–ZnO–Al2O3 and antimony oxide modified HZSM-5 zeolite , 2010 .

[43]  Guo-jun Kang,et al.  A density functional study of pentacoordinated phosphorus species in ZSM-5 zeolite , 2010 .

[44]  Jiří Čejka,et al.  Zeolites and catalysis : synthesis, reactions and applications , 2010 .

[45]  A. Borgna,et al.  Synthesis, Characterization, and Catalytic Activity of Phosphorus Modified H-ZSM-5 Catalysts in Selective Ethanol Dehydration , 2010 .

[46]  Gongxuan Lu,et al.  High performance phosphorus-modified ZSM-5 zeolite for butene catalytic cracking , 2010 .

[47]  P. Claus,et al.  High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part II: Fe–zeolite catalysts , 2010 .

[48]  Heng Li,et al.  Lanthanum–phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: A comparative analysis , 2010 .

[49]  Jinsen Gao,et al.  Highly Efficient P-Modified HZSM-5 Catalyst for the Coupling Transformation of Methanol and 1-Butene to Propene , 2010 .

[50]  K. Jun,et al.  Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction , 2010 .

[51]  Eli Stavitski,et al.  Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. , 2009, Nature materials.

[52]  K. Jun,et al.  Phosphorus induced hydrothermal stability and enhanced catalytic activity of ZSM-5 in methanol to DME conversion , 2009 .

[53]  Zhang Haitao,et al.  Modification of ZSM-5 zeolite for maximizing propylene in fluid catalytic cracking reaction , 2009 .

[54]  K. Lillerud,et al.  Shape‐Selective Conversion of Methanol to Hydrocarbons Over 10‐Ring Unidirectional‐Channel Acidic H‐ZSM‐22 , 2009 .

[55]  Svetlana Mintova,et al.  Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template , 2009 .

[56]  Yi Tang,et al.  Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst , 2009 .

[57]  T. Kojima,et al.  Arsenic adsorption from aqueous solution on synthetic zeolites. , 2009, Journal of hazardous materials.

[58]  M. Ghiaci,et al.  Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5 , 2009 .

[59]  A. Borgna,et al.  Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration , 2009 .

[60]  Xuefeng Guo,et al.  Synergistic effects of tungsten and phosphorus on catalytic cracking of butene to propene over HZSM-5 , 2009 .

[61]  Silvia Bordiga,et al.  The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology , 2009 .

[62]  Unni Olsbye,et al.  Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. , 2008, Chemistry.

[63]  O. Kröcher,et al.  The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal‐Exchanged Zeolite Catalysts , 2008 .

[64]  C. Christensen,et al.  Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. , 2008, Chemical Society reviews.

[65]  F. Ruette,et al.  Modeling extra framework aluminum (EFAL) formation in the zeolite ZSM-5 using parametric quantum and DFT methods , 2008 .

[66]  Ren-qing Lü,et al.  Density functional study on models of interaction between phosphorus species and HZSM-5 , 2008 .

[67]  Weimin Yang,et al.  Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5 , 2008 .

[68]  K. Lillerud,et al.  Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH , 2008 .

[69]  R. G. Silver,et al.  A study of chemical aging effects on HDD Fe–zeolite SCR catalyst , 2008 .

[70]  Jinsen Gao,et al.  Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins , 2008 .

[71]  Ren-qing Lü,et al.  Catalytic activity of phosphorus and steam modified HZSM-5 and the theoretical selection of phosphorus grafting model , 2008 .

[72]  Rijie Wang,et al.  Effect of P Content on the Catalytic Performance of P-modified HZSM-5 Catalysts in Dehydration of Ethanol to Ethylene , 2008 .

[73]  Weiping Ding,et al.  Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5 , 2007 .

[74]  Yi Tang,et al.  Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene , 2007 .

[75]  M. Anpo,et al.  Photocatalytic oxidation of acetaldehyde with oxygen on TiO2/ZSM-5 photocatalysts: Effect of hydrophobicity of zeolites , 2007 .

[76]  S. M. Menezes,et al.  BEA and MOR as additives for light olefins production , 2007 .

[77]  T. Azaïs,et al.  Efficiency of the refocused 31P-29Si MAS-J-INEPT NMR experiment for the characterization of silicophosphate crystalline phases and amorphous gels. , 2007, Inorganic chemistry.

[78]  L. Mussmann,et al.  Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR , 2007 .

[79]  M. Ghiaci,et al.  Internal versus external surface active sites in ZSM-5 zeolite: Part 2: Toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H3PO4/ZSM-5 , 2007 .

[80]  M. Pruski,et al.  SPAM-MQ-HETCOR: an improved method for heteronuclear correlation spectroscopy between quadrupolar and spin-1/2 nuclei in solid-state NMR. , 2006, Physical chemistry chemical physics : PCCP.

[81]  J. M. Lopes,et al.  Stabilization effect of phosphorus on steamed H-MFI zeolites , 2006 .

[82]  M. Pruski,et al.  Modification of H-ZSM-5 zeolites with phosphorus. 2. Interaction between phosphorus and aluminum studied by solid-state NMR spectroscopy , 2006 .

[83]  M. Pruski,et al.  Modification of H-ZSM-5 zeolites with phosphorus. 1. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties , 2006 .

[84]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[85]  J. Nicholas,et al.  Structural and mechanistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[86]  A. Corma,et al.  Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition , 2006 .

[87]  M. Ghiaci,et al.  Internal versus external surface active sites in ZSM-5 zeolite: Part 1. Fries rearrangement catalyzed by modified and unmodified H3PO4/ZSM-5 , 2006 .

[88]  K. Houthoofd,et al.  Toward the aluminum coordination in dealuminated mordenite and amorphous silica-alumina : A high resolution 27Al MAS and MQ mas NMR study , 2005 .

[89]  M. Cardoso,et al.  Surface P and Al Distribution in P-modified ZSM-5 Zeolites , 2005 .

[90]  Wei Wang,et al.  Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T. , 2005, Physical chemistry chemical physics : PCCP.

[91]  B. Wichterlová,et al.  Cracking of pentenes to C2–C4 light olefins over zeolites and zeotypes: Role of topology and acid site strength and concentration , 2005 .

[92]  Zhongmin Liu,et al.  Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking , 2004 .

[93]  M. Hartmann Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport. , 2004, Angewandte Chemie.

[94]  R. Ford,et al.  Use of synthetic zeolites for arsenate removal from pollutant water. , 2004, Water research.

[95]  Zhang Haitao,et al.  Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction , 2004 .

[96]  J. Weitkamp,et al.  State of Aluminum in Dealuminated, Nonhydrated Zeolites Y Investigated by Multinuclear Solid-State NMR Spectroscopy† , 2004 .

[97]  R. Rowell,et al.  Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents. , 2004, Environmental science & technology.

[98]  J. Lercher,et al.  On the enhanced para-selectivity of HZSM-5 modified by antimony oxide , 2003 .

[99]  J. V. van Bokhoven,et al.  Three-coordinate aluminum in zeolites observed with in situ x-ray absorption near-edge spectroscopy at the Al K-edge: flexibility of aluminum coordinations in zeolites. , 2003, Journal of the American Chemical Society.

[100]  P. Cox,et al.  The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. , 2003, Chemical reviews.

[101]  Johannes H. Bitter,et al.  Generation, Characterization, and Impact of Mesopores in Zeolite Catalysts , 2003 .

[102]  Torsten Maeurer,et al.  Comparing synthesis routes to nano-crystalline zeolite ZSM-5 , 2003 .

[103]  Jean-Pierre Gilson,et al.  Zeolites for cleaner technologies , 2002 .

[104]  T. Nakajima,et al.  Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. , 2002, Journal of hazardous materials.

[105]  Zhongmin Liu,et al.  Crystallization and Si incorporation mechanisms of SAPO-34 , 2002 .

[106]  J. Bilbao,et al.  Study of operating variables in the transformation of aqueous ethanol into hydrocarbons on an HZSM‐5 zeolite , 2002 .

[107]  C. Smith,et al.  Alkylation of aromatics with ethylene and propylene: recent developments in commercial processes , 2001 .

[108]  A. Vlessidis,et al.  Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites , 2001 .

[109]  P. Schipper,et al.  History of ZSM-5 fluid catalytic cracking additive development at Mobil , 2000 .

[110]  A. Corma,et al.  Current views on the mechanism of catalytic cracking , 2000 .

[111]  B. Gates,et al.  The Haag–Dessau mechanism of protolytic cracking of alkanes☆ , 2000 .

[112]  R. Prins,et al.  Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with SiCl4 by 1H, 29Si and 27Al MAS NMR , 2000 .

[113]  R. Grasselli,et al.  Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): I. DH → SHC → DH catalysts in series (co-fed process mode) , 1999 .

[114]  Limin Huang,et al.  Enhanced Acidity and Thermal Stability of Mesoporous Materials with Post-treatment with Phosphoric Acid , 1999 .

[115]  Paul T. Barger,et al.  The characteristics of SAPO-34 which influence the conversion of methanol to light olefins , 1999 .

[116]  W. Hölderich,et al.  Industrial application of solid acid–base catalysts , 1999 .

[117]  C. López,et al.  Template-free synthesis and catalytic behaviour of aluminium-rich MFI-type zeolites , 1999 .

[118]  J. Lunsford,et al.  Characterization of [(CH3)3P-H]+ complexes in normal H-Y, dealuminated H-Y, and H-ZSM-5 zeolites using 31P solid-state NMR spectroscopy , 1999 .

[119]  P. Tynjälä,et al.  Modification of ZSM-5 Zeolite with Trimethyl Phosphite. 2. Catalytic Properties in the Conversion of C1−C4 Alcohols , 1998 .

[120]  T. Pakkanen,et al.  Modification of zsm-5 zeolite with trimethyl phosphite part 1. structure and acidity , 1998 .

[121]  R. Datta,et al.  Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions , 1997 .

[122]  R. Howe,et al.  Reaction of LTA and FAU zeolites with NH4H2PO4 melts yields crystalline NH4AlP2O7 , 1997 .

[123]  B. Gates,et al.  Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules , 1997 .

[124]  R. Ryoo,et al.  Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process , 1997 .

[125]  D. Bibby,et al.  Dealumination of HZSM-5 zeolites. I. Calcination and hydrothermal treatment , 1996 .

[126]  D. Bibby,et al.  Dealumination of HZSM-5 Zeolites: II. Methanol to Gasoline Conversion , 1996 .

[127]  C. Catlow,et al.  Structure and Stability of Silica Species in SAPO Molecular Sieves , 1996 .

[128]  J. Rocha,et al.  Thermal and hydrothermal stability of the silicoaluminophosphate SAPO-40 , 1995 .

[129]  J. Gopalakrishnan Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials , 1995 .

[130]  Mark E. Davis,et al.  Preparation of Zeolite ZSM-5 Membranes by In-Situ Crystallization on Porous α-Al_2O_3 , 1995 .

[131]  D. Barthomeuf Topological model for the compared acidity of SAPOs and SiAl zeolites , 1994 .

[132]  B. Viswanathan,et al.  Surface properties of ZSM-5 modified by phosphorus , 1993 .

[133]  V. Romannikov,et al.  Alkylation of aromatics on p-containing ZSM-5 zeolites , 1993 .

[134]  J. W. Ward Hydrocracking processes and catalysts , 1993 .

[135]  F. Lefebvre,et al.  Modification of siliceous zeolites using phosphorus pentachloride , 1992 .

[136]  E. Schreier,et al.  Spectroscopic and physicochemical characterization of P-Modified H-ZSM-5 , 1991 .

[137]  W. Reschetilowski,et al.  Synthesis and Characterization of P‐containing ZSM‐5 Zeolites , 1991 .

[138]  J. Caro NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid , 1990 .

[139]  G. Seo,et al.  31P, 27Al, and 129Xe NMR study of phosphorus-impregnated HZSM-5 zeolite catalysts , 1990 .

[140]  L. Kustov,et al.  Study of different states of nonframework aluminum in hydrothermally dealuminated HZSM-5 zeolites using diffuse reflectance i.r. spectroscopy , 1990 .

[141]  J. Lercher,et al.  Modification of HZSM-5 with trimethylphosphine , 1990 .

[142]  J. Lavalley,et al.  Amorphization levels, nature and localization of the extraframework phases of dealuminated Y zeolites , 1990 .

[143]  J. Lercher,et al.  Hydroxyl groups in phosphorus-modified HZSM-5 , 1989 .

[144]  W. R. Moser,et al.  Silicon-rich H-ZSM-5 catalyzed conversion of aqueous ethanol to ethylene , 1989 .

[145]  S. Kaliaguine,et al.  Chemical modification of H-ZSM-5 by adsorption of rhodium and phosphorus complexes , 1989 .

[146]  J. Lercher,et al.  Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites , 1989 .

[147]  A. Corma,et al.  Influence of the level of dealumination on the selective adsorption of olefins and paraffins and its implication on hydrogen transfer reactions during catalytic cracking on USY zeolites , 1989 .

[148]  S. Kaliaguine,et al.  Spectroscopic and catalytic study of P-modified ZSM-5 , 1988 .

[149]  S. Suib,et al.  Surface chemical states of aluminophosphate and silicoaluminophosphate molecular sieves , 1987 .

[150]  J. Lercher,et al.  Controlled decrease of acid strength by orthophosphoric acid on ZSM5 , 1986 .

[151]  S. B. Gevert,et al.  Fluid catalytic cracking of heavy (residual) oil fractions: a review , 1986 .

[152]  J. Cunningham,et al.  Combined catalytic and infrared study of the modification of H-ZSM-5 with selected poisons to give high p-xylene selectivity , 1984 .

[153]  C. Chu,et al.  Methanol conversion to olefins over ZSM-5. I: Effect of temperature and zeolite SiO2/Al2O3 , 1984 .

[154]  P. Ratnasamy,et al.  Alkylation of benzene with ethanol over ZSM5 zeolites , 1982 .

[155]  P. Rodewald,et al.  Aromatics, light olefins and gasoline from methanol: Mechanistic pathways with ZSM-5 zeolite catalyst , 1982 .

[156]  W. W. Kaeding,et al.  Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts , 1982 .

[157]  W. M. Meier,et al.  Crystal structure and structure-related properties of ZSM-5 , 1981 .

[158]  W. W. Kaeding,et al.  Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-Xylene , 1981 .

[159]  W. W. Kaeding,et al.  SELECTIVE ALKYLATION OF TOLUENE WITH METHANOL TO PRODUCE PARA-XYLENE , 1981 .

[160]  N. Chen,et al.  Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts , 1979 .

[161]  K. Chao,et al.  The comparison of cracking activity, product selectivity, and steam stability of ZSM-5 to other cracking catalysts , 1979 .

[162]  Clarence Dayton Chang,et al.  The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects , 1977 .

[163]  G. T. Kerr Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y , 1967 .

[164]  C. Plank,et al.  Acidic Crystalline Aluminosilicates. New Superactive, Superselective Cracking Catalysts , 1964 .

[165]  G. M. Good,et al.  Catalytic and Thermal Cracking of Pure Hydrocarbons: Mechanisms of Reaction , 1949 .

[166]  Yue M. Liu,et al.  Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5 , 2014 .

[167]  M. Shirai,et al.  P-ZSM-5 Pretreated by High-Temperature Calcination as Durable Catalysts for Steam Cracking of n-Hexane , 2013, Catalysis Letters.

[168]  X. Bao,et al.  Conversion of Methanol to Hydrocarbons over Phosphorus-modified ZSM-5/ZSM-11 Intergrowth Zeolites , 2010 .

[169]  Joel J. P. C. Rodrigues,et al.  Fuel Process. Technol. , 2005 .

[170]  P. Pernice,et al.  Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses , 2001 .

[171]  A. Corma,et al.  Orthophosphoric acid interactions with ultrastable zeolite Y : infrared and NMR studies , 1994 .

[172]  K. P. Jong,et al.  Skeletal isomerisation of olefins with the zeolite Ferrierite as catalyst , 1994 .

[173]  Energy&Fuels®. , 1994, Environmental science & technology.

[174]  A. Wielers,et al.  Relation between properties and performance of zeolites in paraffin cracking , 1991 .

[175]  K. Schmitt,et al.  A reexamination of phosphorus-containing zeolites ZK-21 and ZK-22 in light of SAPO-42 , 1990 .

[176]  D. Barthomeuf,et al.  Thermal and hydrothermal stability of SAPO-5 and SAPO-37 molecular sieves , 1989 .

[177]  A. Auroux,et al.  Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite , 1982 .

[178]  W. W. Kaeding,et al.  Production of chemicals from methanol: I. Low molecular weight olefins , 1980 .

[179]  Patricio Reyes,et al.  React. Kinet. Catal. Lett. , 1974 .

[180]  R. M. Barrer,et al.  Hydrothermal chemistry of silicates. Part XX. The question of phosphorus substitution for silicon during zeolite synthesis , 1974 .