Re-annotation of 191 developmental and epileptic encephalopathy-associated genes unmasks de novo variants in SCN1A

[1]  L. Maquat,et al.  Quality and quantity control of gene expression by nonsense-mediated mRNA decay , 2019, Nature Reviews Molecular Cell Biology.

[2]  Flip Mulder,et al.  Influence of common SCN1A promoter variants on the severity of SCN1A‐related phenotypes , 2019, Molecular genetics & genomic medicine.

[3]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[4]  G. Carvill,et al.  Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. , 2018, American journal of human genetics.

[5]  Alina Khromykh,et al.  Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures , 2018, Cold Spring Harbor molecular case studies.

[6]  Abramowicz Anna,et al.  Splicing mutations in human genetic disorders: examples, detection, and confirmation , 2018, Journal of Applied Genetics.

[7]  S. Scherer,et al.  Periodic reanalysis of whole-genome sequencing data enhances the diagnostic advantage over standard clinical genetic testing , 2018, European Journal of Human Genetics.

[8]  W. Tarn,et al.  Alternative Splicing in Neurogenesis and Brain Development , 2018, Front. Mol. Biosci..

[9]  Tomas W. Fitzgerald,et al.  Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders , 2018, Genetics in Medicine.

[10]  R. Gainetdinov,et al.  Human Accelerated Regions and Other Human-Specific Sequence Variations in the Context of Evolution and Their Relevance for Brain Development , 2017, Genome biology and evolution.

[11]  Soon Sung Kwon,et al.  Efficacy of Stiripentol in Dravet Syndrome with or without SCN1A Mutations , 2017, Journal of clinical neurology.

[12]  Epilepsy Genetics Initiative De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy , 2017, Genetics in Medicine.

[13]  J. Menezes,et al.  The role of alternative splicing coupled to nonsense-mediated mRNA decay in human disease. , 2017, The international journal of biochemistry & cell biology.

[14]  Gianluca Bontempi,et al.  Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability , 2017, Genome Medicine.

[15]  F. Allain,et al.  Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7 , 2017, eLife.

[16]  R. Durbin,et al.  Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly , 2016, bioRxiv.

[17]  Gil McVean,et al.  The 100,000 Genomes Project Protocol , 2017 .

[18]  Joan,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[19]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[20]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[21]  R. Myers,et al.  Genomic diagnosis for children with intellectual disability and/or developmental delay , 2016, bioRxiv.

[22]  Michael R. Johnson,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[23]  Peter V. Kharchenko,et al.  Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex , 2016, Cell.

[24]  G. Carvill,et al.  Pitfalls in genetic testing: the story of missed SCN1A mutations , 2016, Molecular genetics & genomic medicine.

[25]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, bioRxiv.

[26]  Arthur Wuster,et al.  Timing, rates and spectra of human germline mutation , 2015, Nature Genetics.

[27]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[28]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[29]  Thomas D. Wu,et al.  GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality , 2016, Statistical Genomics.

[30]  I. Scheffer,et al.  A roadmap for precision medicine in the epilepsies , 2015, The Lancet Neurology.

[31]  Kin-Fan Au,et al.  PacBio Sequencing and Its Applications , 2015, Genom. Proteom. Bioinform..

[32]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[33]  Yujun Han,et al.  Incorporating Functional Information in Tests of Excess De Novo Mutational Load. , 2015, American journal of human genetics.

[34]  T. Blauwkamp,et al.  Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events , 2015, Nature Biotechnology.

[35]  Alejandro Sifrim,et al.  Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data , 2015, The Lancet.

[36]  Sebastien M. Weyn-Vanhentenryck,et al.  Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators , 2015, Proceedings of the National Academy of Sciences.

[37]  Leonardo Collado-Torres,et al.  Developmental regulation of human cortex transcription and its clinical relevance at base resolution , 2014, Nature Neuroscience.

[38]  Epilepsy Phenome,et al.  De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. , 2014, American journal of human genetics.

[39]  E. Sherr,et al.  Epileptic Encephalopathies: New Genes and New Pathways , 2014, Neurotherapeutics.

[40]  E. Zackai,et al.  Mutations within the spliceosomal gene SNRPB affect its auto‐regulation and are causative for classic cerebro‐costo‐mandibular syndrome , 2015, Clinical genetics.

[41]  Michel A. Hofman,et al.  Evolution of the human brain: when bigger is better , 2014, Front. Neuroanat..

[42]  Nuno A. Fonseca,et al.  Expression Atlas update—a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments , 2013, Nucleic Acids Res..

[43]  M. Caputi,et al.  hnRNP A1: The Swiss Army Knife of Gene Expression , 2013, International journal of molecular sciences.

[44]  S. Ganesh,et al.  The SCN1A gene variants and epileptic encephalopathies , 2013, Journal of Human Genetics.

[45]  German Tischler,et al.  biobambam: tools for read pair collation based algorithms on BAM files , 2013, Source Code for Biology and Medicine.

[46]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[47]  Robert S. Young,et al.  Identification and function of long non-coding RNAs. , 2013, Essays in biochemistry.

[48]  Roderic Guigó,et al.  Intron-centric estimation of alternative splicing from RNA-seq data , 2012, Bioinform..

[49]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[50]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[51]  Jennifer L. Harrow,et al.  The importance of identifying alternative splicing in vertebrate genome annotation , 2012, Database J. Biol. Databases Curation.

[52]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[53]  P. D. Rijk,et al.  Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing , 2011, Nature Biotechnology.

[54]  Manolis Kellis,et al.  PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions , 2011, Bioinform..

[55]  Jonathan M. Mudge,et al.  The Origins, Evolution, and Functional Potential of Alternative Splicing in Vertebrates , 2011, Molecular biology and evolution.

[56]  C. Dravet The core Dravet syndrome phenotype , 2011, Epilepsia.

[57]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[58]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[59]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[60]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[61]  C. Béroud,et al.  Human Splicing Finder: an online bioinformatics tool to predict splicing signals , 2009, Nucleic acids research.

[62]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[63]  P. D. Rijk,et al.  Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR–based GS‐FLX sequencing , 2009, Human mutation.

[64]  Yi-wu Shi,et al.  Identification of the promoter region and the 5′‐untranslated exons of the human voltage‐gated sodium channel Nav1.1 gene (SCN1A) and enhancement of gene expression by the 5′‐untranslated exons , 2008, Journal of neuroscience research.

[65]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[66]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[67]  David Haussler,et al.  Targeted discovery of novel human exons by comparative genomics. , 2007, Genome research.

[68]  David Haussler,et al.  Comparative Genomics Search for Losses of Long-Established Genes on the Human Lineage , 2007, PLoS Comput. Biol..

[69]  Angela N. Brooks,et al.  The coupling of alternative splicing and nonsense-mediated mRNA decay. , 2007, Advances in experimental medicine and biology.

[70]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[71]  Josemir W Sander,et al.  Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  S. Waxman,et al.  Novel splice variants of the voltage‐sensitive sodium channel alpha subunit , 1998, Neuroreport.

[73]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[74]  Richard Mott,et al.  EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA , 1997, Comput. Appl. Biosci..