A systematic mapping procedure based on the Modified Gaussian Model to characterize magmatic units from olivine/pyroxenes mixtures: Application to the Syrtis Major volcanic shield on Mars

Clenet et al. (2011) have developed an adapted version of the Modified Gaussian Model (MGM). The improvements allow the characterization of spectra of olivine‐pyroxene(s) mixtures, addressing both modal composition and individual minerals chemical composition. This version of MGM is fully automated and operational with large amounts of hyperspectral imaging data. Two natural cases are considered. The first one is the Sumail massif in the Oman ophiolite (Earth). Based on our approach applied to HyMap data, two contrasted lithologic units are mapped: the mantle, which is harzburgite dominated, and the crust made of gabbros and clinopyroxene‐rich cumulates, with spectral variations interpreted in terms of pyroxenes chemical compositions. Once this new MGM mapping approach has been validated on a controlled natural situation, we map the distribution of mafic assemblages across the Syrtis Major volcano on Mars using a visible and near‐infrared (VNIR) ‐ short wave infrared (SWIR) Observatoire pour la minéralogie, l'eau, les glaces et l'activité (OMEGA) / Mars Express (MEx) mosaic. Our results are in agreement with previous work but olivine appears to be more abundant than previously estimated in the central part of the volcanic edifice, especially in ternary mafic assemblages (augite, olivine, enstatite). Based on these results, we propose a possible scenario for the igneous (and thus thermal) evolution of the Syrtis Major region. Surrounding terrains have formed first and local heterogeneity can be observed between northern and southern areas of the Noachian crust. We also observe variations in the mineral assemblages within Syrtis Major lavas, which can be interpreted in terms of differentiation from a common parent melt and/or of a progressive evolution of the mantle source composition and temperature.

[1]  John B. Adams,et al.  Lunar and Martian Surfaces: Petrologic Significance of Absorption Bands in the Near-Infrared , 1968, Science.

[2]  Roger G. Burns,et al.  Crystal field spectra and evidence of cation ordering in olivine minerals , 1970 .

[3]  G. Hunt Visible and near-infrared spectra of minerals and rocks : I silicate minerals , 1970 .

[4]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[5]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[6]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[7]  P. Burek Geology of the Oman Mountains: K.W. Glennie, M.G.A. Boeuf, M.W. Hughes Clarke, M. Moody-Stuart, W.F.H. Pilaar and B.M. Reinhardt. Verhandelingen van het Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap. Nijhoff, The Hague, 1975, Dfl. 300.00 , 1977 .

[8]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[9]  H. Mao,et al.  Effects of compositional variation on absorption spectra of lunar pyroxenes , 1978 .

[10]  JOSEPH V. Smith,et al.  SHERGOTTY METEORITE: MINERALOGY, PETROGRAPHY AND MINOR ELEMENTS , 1979 .

[11]  H. McSween,et al.  Petrology and origin of the shergottite meteorites , 1979 .

[12]  James W. Head,et al.  Volcanism on Mars , 1981, Nature.

[13]  R. Singer Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .

[14]  G. Schaber,et al.  Syrtis major: A low‐relief volcanic shield , 1982 .

[15]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[16]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[17]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[18]  F. Boudier,et al.  Mantle flow patterns at an oceanic spreading centre: The Oman peridotites record , 1988 .

[19]  William E. Asher,et al.  Reflected optical second‐harmonic generation in the study of naturally occurring organic films at the ocean surface , 1988 .

[20]  P. Pinet,et al.  Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earth‐based near‐infrared telescopic charge‐coupled device imaging , 1990 .

[21]  Carle M. Pieters,et al.  Deconvolution of mineral absorption bands: An improved approach , 1990 .

[22]  G. J. Taylor,et al.  Zagami - Product of a two-stage magmatic history. [of shergottite meteorite] , 1991 .

[23]  G. Ceuleneer Evidence for a Paleo-Spreading Center in the Oman Ophiolite: Mantle Structures in the Maqsad Area , 1991 .

[24]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .

[25]  Michael J. Gaffey,et al.  Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications , 1991 .

[26]  A. Goetz,et al.  Software for the derivation of scaled surface reflectances from AVIRIS data , 1992 .

[27]  Carle M. Pieters,et al.  Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model , 1993 .

[28]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[29]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[30]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[31]  P. Christensen,et al.  Evidence for Komatiite-type lavas on Mars from Phobos ISM data and other observations , 1994 .

[32]  J F Mustard,et al.  Seeing through the dust: martian crustal heterogeneity and links to the SNC meteorites , 1995, Science.

[33]  I. Amri Etude pétrologique et structurale d'une dorsale océanique fossile, massif de Sumai͏̈l (ophiolite d'Oman) : implications pour les mécanismes d'accrétion océaniques , 1995 .

[34]  G. Ceuleneer,et al.  Thermal structure of a fossil mantle diapir inferred from the distribution of mafic cumulates , 1996, Nature.

[35]  S. Erard,et al.  In situ compositions of Martian volcanics: Implications for the mantle , 1997 .

[36]  J. Bell,et al.  Mars surface mineralogy from Hubble Space Telescope imaging during 1994–1995: Observations, calibration, and initial results , 1997 .

[37]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .

[38]  Carle M. Pieters,et al.  Determining the composition of olivine from reflectance spectroscopy , 1998 .

[39]  M. Benoit,et al.  The remelting of hydrothermally altered peridotite at mid-ocean ridges by intruding mantle diapirs , 1999, Nature.

[40]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[41]  J. Mustard,et al.  Ronda peridotite massif: Methodology for its geological mapping and lithological discrimination from airborne hyperspectral data , 2000 .

[42]  P. Christensen,et al.  Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer , 2001 .

[43]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[44]  The Martian Surface Composition , 2001 .

[45]  Joshua L. Bandfield,et al.  Global mineral distributions on Mars , 2002 .

[46]  A. Cord,et al.  Hyperspectral remote sensing approach for rock surface mineralogy mapping in arid environment , 2002 .

[47]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[48]  S. Erard,et al.  A new view of dark Martian regions from geomorphic and spectroscopic analysis of Syrtis Major , 2003 .

[49]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[50]  G. Ceuleneer,et al.  Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite , 2003 .

[51]  J. Head,et al.  The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data , 2004 .

[52]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[53]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[54]  N. Mangold,et al.  Thermal properties of lobate ejecta in Syrtis Major, Mars: Implications for the mechanisms of formation , 2005 .

[55]  A. Treiman The nakhlite meteorites: Augite-rich igneous rocks from Mars , 2005 .

[56]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[57]  Alain Soufflot,et al.  The ground calibration setup of OMEGA and VIRTIS experiments: description and performances , 2005 .

[58]  M. Rabinowicz,et al.  The effect of sloped isotherms on melt migration in the shallow mantle: a physical and numerical model based on observations in the Oman ophiolite , 2005 .

[59]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[60]  M. Malin,et al.  Evidence for magmatic evolution and diversity on Mars from infrared observations , 2005, Nature.

[61]  R. P. Harvey,et al.  Syrtis Major as the Source Region of the Nakhlite/Chassigny Group of Martian Meteorites: Implications for the Geological History of Mars , 2005 .

[62]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[63]  Yves Langevin,et al.  OMEGA/Mars Express: Visual channel performances and data reduction techniques , 2006 .

[64]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[65]  C. Sotin,et al.  Mantle Rock Surface Mineralogy Mapping in Arid Environment from Imaging Spectroscopy: The Case of Maqsad Peridotitic Massif in Oman and Implications for the Spectroscopic Study of Exposed Mafic Units on Mars , 2006 .

[66]  Patrick Pinet,et al.  Mapping of an ophiolite complex by high‐resolution visible‐infrared spectrometry , 2006 .

[67]  Jeffrey R. Johnson,et al.  Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars , 2006 .

[68]  J. Mustard,et al.  Mafic Mineralogy Variations Across Syrtis Major Shield and Surroundings as Inferred from Visible-Near-Infrared Spectroscopy by OMEGA/Mars Express , 2007 .

[69]  Philip R. Christensen,et al.  Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration , 2007 .

[70]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[71]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[72]  Aline Gendrin,et al.  Assessing the limits of the Modified Gaussian Model for remote spectroscopic studies of pyroxenes on Mars , 2007 .

[73]  M. Darby Dyar,et al.  Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .

[74]  J. Mustard,et al.  Mineralogical structure of the subsurface of Syrtis Major from OMEGA observations of lobate ejecta blankets , 2007 .

[75]  Y. Daydou,et al.  A Systematic Testing Approach Using the Modified Gaussian Model (MGM) for Mafic Mineralogy Mapping in Natural Conditions (Earth, Mars) , 2008 .

[76]  Jean-Pierre Bibring,et al.  Analysis of OMEGA/Mars Express data hyperspectral data using a Multiple-Endmember Linear Spectral Unmixing Model (MELSUM) : Methodology and first results , 2008 .

[77]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[78]  T. Hiroi,et al.  Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approach , 2009 .

[79]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[80]  Patrick Pinet,et al.  Geological mapping strategy using visible near‐infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite (Sumail Massif) , 2009 .

[81]  Harold Clenet,et al.  Télédétection hyperspectrale : minéralogie et pétrologie, application au volcan Syrtis Major (Mars) et à l'ophiolite d'Oman , 2009 .

[82]  Jean-Pierre Bibring,et al.  Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. 2. Petrological implications , 2009 .

[83]  S. Murchie,et al.  Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin , 2009 .

[84]  P. Pinet,et al.  Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: Petrogenesis and relationship to mantle diapirism , 2010 .

[85]  N. Mangold,et al.  Segregation of olivine grains in volcanic sands in Iceland and implications for Mars , 2010 .

[86]  S. Murchie,et al.  Spectrally distinct ejecta in Syrtis Major, Mars: Evidence for environmental change at the Hesperian-Amazonian boundary , 2010 .

[87]  John F. Mustard,et al.  Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars , 2010 .

[88]  Patrick Pinet,et al.  A new systematic approach using the Modified Gaussian Model: Insight for the characterization of chemical composition of olivines, pyroxenes and olivine-pyroxene mixtures , 2011 .

[89]  M. Darby Dyar,et al.  Near‐infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure , 2011 .

[90]  O. Gasnault,et al.  Thermal history of Mars inferred from orbital geochemistry of volcanic provinces , 2011, Nature.

[91]  Jean-Pierre Bibring,et al.  Iron mineralogy of the surface of Mars from the 1 μm band spectral properties , 2012 .

[92]  John F. Mustard,et al.  An in‐situ record of major environmental transitions on early Mars at Northeast Syrtis Major , 2012 .

[93]  P. Allemand,et al.  Noachian Crust Composition and Early Alteration Processes in the Vicinity of Valles Marineris as seen from the Central Peaks of Impact Craters , 2012 .

[94]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[95]  A. Dolman,et al.  Inverse carbon dioxide flux estimates for the Netherlands , 2012 .

[96]  J. Moersch,et al.  A technique for mapping Fe/Mg‐rich phyllosilicates on Mars using THEMIS multispectral thermal infrared images , 2012 .

[97]  S. Murchie,et al.  A spectroscopic analysis of Martian crater central peaks: Formation of the ancient crust , 2012 .

[98]  Jean-Pierre Bibring,et al.  Global investigation of olivine on Mars: Insights into crust and mantle compositions , 2013 .

[99]  M. Rajeevan,et al.  Nowcasting severe convective activity over southeast India using ground‐based microwave radiometer observations , 2013 .

[100]  V. Sautter,et al.  The petrological expression of early Mars volcanism , 2013 .