On Partition Dimension of Some Cycle-Related Graphs

<jats:p>Let <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>G</mi> </math> </jats:inline-formula> be a simple connected graph. Suppose <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi mathvariant="normal">Δ</mi> <mo>=</mo> <mfenced open="{" close="}" separators="|"> <mrow> <msub> <mi mathvariant="normal">Δ</mi> <mrow> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi mathvariant="normal">Δ</mi> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi mathvariant="normal">Δ</mi> <mrow> <mi>l</mi> </mrow> </msub> </mrow> </mfenced> </math> </jats:inline-formula> an <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>l</mi> </math> </jats:inline-formula>-partition of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mi>V</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula>. A partition representation of a vertex <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <mi>α</mi> <mtext> w</mtext> <mo>.</mo> <mtext>r</mtext> <mo>.</mo> <mtext>t </mtext> <mi mathvariant="normal">Δ</mi> </math> </jats:inline-formula> is the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6"> <mi>l</mi> <mo>−</mo> </math> </jats:inline-formula>vector <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7"> <mfenced open="(" close=")" separators="|"> <mrow> <mi>d</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <msub> <mi mathvariant="normal">Δ</mi> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </mfenced> <mo>,</mo> <mi>d</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <msub> <mi mathvariant="normal">Δ</mi> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </mfenced> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mi>d</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mo>,</mo> <msub> <mi mathvariant="normal">Δ</mi> <mrow> <mi>l</mi> </mrow> </msub> </mrow> </mfenced> </mrow> </mfenced> </math> </jats:inline-formula>, denoted by <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8"> <mi>r</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>α</mi> <mrow> <mi>|</mi> <mi mathvariant="normal">Δ</mi> </mrow> </mrow> </mfenced> </math> </jats:inline-formula>. Any partition <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9"> <mi mathvariant="normal">Δ</mi> </math> </jats:inline-formula> is referred as resolving partition if <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M10"> <mo>∀</mo> <msub> <mrow> <mi>α</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mo>≠</mo> <msub> <mrow> <mi>α</mi> </mrow> <mrow> <mi>j</mi> </mrow> </msub> <mo>∈</mo> <mi>V</mi> <mfenced open="(" close=")" separators="|"> <mrow> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> such that <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M11"> <mi>r</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>α</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> <mrow> <mi>|</mi> <mi mathvariant="normal">Δ</mi> </mrow> </mrow> </mfenced> <mo>≠</mo> <mi>r</mi> <mfenced open="(" close=")" separators="|"> <mrow> <msub> <mrow> <mi>α</mi> </mrow> <mrow> <mi>j</mi> </mrow> </msub> <mrow> <mi>|</mi> <mi mathvariant="normal">Δ</mi> </mrow> </mrow> </mfenced> </math> </jats:inline-formula>. The smallest integer <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M12"> <mi>l</mi> </math> </jats:inline-formula> is referred as the partition dimension <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M13"> <mtext>pd</mtext> <mfenced open="(" close=")" separators="|"> <mrow> <mi>G</mi> </mrow> </mfenced> </math> </jats:inline-formula> of <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M14"> <mi>G</mi> </math> </jats:inl

[1]  N. Duncan Leaves on trees , 2014 .

[2]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[3]  Henning Fernau,et al.  On the partition dimension of unicyclic graphs , 2011 .

[4]  Vasek Chvátal,et al.  Mastermind , 1983, Comb..

[5]  M. Imran,et al.  Computation of Metric Dimension and Partition Dimension of Nanotubes , 2015 .

[6]  M. Johnson,et al.  Structure-activity maps for visualizing the graph variables arising in drug design. , 1993, Journal of biopharmaceutical statistics.

[7]  Gary Chartrand,et al.  The partition dimension of a graph , 2000 .

[8]  S. Pirzada,et al.  Upper dimension and bases of zero-divisor graphs of commutative rings , 2020, AKCE Int. J. Graphs Comb..

[10]  S. Pirzada,et al.  On upper dimension of graphs and their bases sets , 2020 .

[11]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[12]  Shariefuddin Pirzada,et al.  On graphs with same metric and upper dimension , 2021, Discret. Math. Algorithms Appl..

[13]  Ali Ahmad,et al.  Computing the metric dimension of Kayak Paddles graph and Cycles with chord , 2020 .

[14]  S. Santhakumar PARTITION DIMENSION OF HONEYCOMB DERIVED NETWORKS , 2016 .

[15]  Yu-Ming Chu,et al.  On Sharp Bounds on Partition Dimension of Convex Polytopes , 2020, IEEE Access.

[16]  Mark E. Johnson Browsable structure-activity datasets , 1999 .

[17]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[18]  Rashid Farooq,et al.  On partition dimension of fullerene graphs , 2018 .

[19]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[20]  Juan A. Rodríguez-Velázquez,et al.  On the partition dimension of trees , 2014, Discret. Appl. Math..