Die Cothermolyse der Metallcarbonyle M(CO)m (M = Fe, m = 5; M = Mo, m = 6) mit durch t-Butylgruppen mono– und disubstituierten Cyclopentadienen ist eine gunstige Moglichkeit zur Darstellung von Komplexen des Typs [Cp*M(CO)n]2 (Cp* = n5-C5H3(t-Bu)R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Fur die einzelnen Komplexe gibt es optimale Synthesetemperaturen. Wird bei der Darstellung der Fe-Derivate eine Temperatur von 130°C uberschritten, sinkt die Ausbeute infolge von Zersetzungsreaktionen. Die Synthese der Komplexe [Cp*Mo(CO)3]2 erfolgt bei einer Temperatur von 130–140°C, wahrend bei 160°C die Derivate [Cp*Mo(CO)2]2 mit formaler (MoMo)-Dreifachbindung erhalten werden. Die Strukturen der gebildeten Komplexe werden an Hand von 1H-, 13C-NMR-, IR- und Massenspektren diskutiert. Fur [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) wurde bei−95°C eine Rontgenstrukturanalyse durchgefuhrt. Es kristallisiert in der Raumgruppe Pbca, mit den Gitterkonstanten a = 1808,6(6), b = 1308,5(4), c = 2507,9(9) pm. Z = 8, R = 0,031 fur 3794 Reflexe. Der MoMo-Bindungsabstand (253,3 pm) ist fur eine formale Dreifachbindung sehr lang. Die Cp″MoMoCp″-Achse ist nicht linear.
Mono- and Di-t-Butylcyclopentadienyl Carbonyl Complexes of Iron and Molybdenum — Crystal Structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3-t-Bu2-1,3)
Cothermolysis of M(CO)m (M = Fe, m = 5; M = Mo, m = 6) with t-Bu-substituted cyclopentadienyls constitutes a simple synthesis of complexes of the type [Cp*M(CO)n]2 (CP* = n5-C5H3 (t-Bu), R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Each synthesis has an optimal temperature. The yield of Fe complexes decreases at temperatures above 130°C because of decomposition of the product. Optimal yields of [Cp*Mo(CO)3]2 are obtained at 130–140°C, whereas at 160°C complexes of the type [Cp*Mo(CO)2]2 with formal MoMo triple bonds are obtained. The structure of the complexes is discussed on the basis of 1H-, 13C-NMR, IR, and mass spectrometry. The structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) was determined by X-ray crystallography at −95°C. It crystallises in the space group Pbca, with cell constants a = 1808.6(6), b = 1308.5(4), c = 2507.9(9) pm, Z = 8, R = 0.031 for 3794 reflections. The MoMo bond length of 253.3 pm is very long for a formal triple bond. The Cp″MoMoCp″ axis is non-linear.
[1]
E. W. Casserly,et al.
Di-tert-butylcyclopentadiene and tri-tert-butylcyclopentadiene
,
1990
.
[2]
H. Stolzenberg,et al.
31.4 – Dinuclear Iron Compounds with Hydrocarbon Ligands
,
1982
.
[3]
A. R. Manning,et al.
A simple and effective preparation of (η-RC5H4)2M2(CO)6 complexes (M Cr, Mo, and W)
,
1978
.
[4]
M. Curtis,et al.
Molecular structure of dicyclopentadienyltetracarbonyldimolybdenum(Mo.tplbond.Mo). Semibridging carbonyls as four-electron donors in complexes with metal-metal multiple bonds
,
1978
.
[5]
M. Curtis,et al.
The Crystal and Molecular Structure of Bis(cyclopentadienyldicarbonylchromium) (CrCr)
,
1978
.
[6]
O. Gansow,et al.
A carbon-13 and proton magnetic resonance examination of solute structures, equilibriums, and structural interconversions in some dinuclear .eta.5-dienylruthenium, -iron, and -nickel carbonyls
,
1976
.
[7]
F. Cotton,et al.
Molecular structures and barriers to internal rotation in bis (.eta.5-cyclopentadienyl)hexacarbonylditungsten and its molybdenum analog
,
1974
.
[8]
F. Cotton,et al.
Pathway of bridge-terminal ligand exchange in some binuclear metal carbonyls. Bis(pentahapto-cyclopentadienyldicarbonyliron) and its di(methyl isocyanide) derivative and bis(pentahapto-cyclopentadienylcarbonylnitrosylmanganese)
,
1973
.
[9]
O. Gansow,et al.
Temperature-dependent carbon-13 nuclear magnetic resonance spectra of the h5-cyclopentadienyliron dicarbonyl dimer, an application of a shiftless relaxation reagnet
,
1972
.
[10]
R. King,et al.
Organometallic chemistry of the transition metals XXI. Some π-pentamethylcyclopentadienyl derivatives of various transition metals
,
1967
.