Analysis and Finite Element Approximation of a Nonlinear Stationary Stokes Problem Arising in Glaciology

The aim of this paper is to study a nonlinear stationary Stokes problem with mixed boundary conditions that describes the ice velocity and pressure fields of grounded glaciers under Glen's flow law. Using convex analysis arguments, we prove the existence and the uniqueness of a weak solution. A finite element method is applied with approximation spaces that satisfy the inf-sup condition, and a priori error estimates are established by using a quasinorm technique. Several algorithms (including Newton's method) are proposed to solve the nonlinearity of the Stokes problem and are proved to be convergent. Our results are supported by numerical convergence studies.

[1]  R. Glowinski,et al.  APPROXIMATION OF A NONLINEAR ELLIPTIC PROBLEM ARISING IN A NON-NEWTONIAN FLUID FLOW MODEL IN GLACIOLOGY , 2003 .

[2]  J. Baranger,et al.  Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .

[3]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[4]  Jacques Baranger,et al.  Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .

[5]  Jason S. Howell,et al.  Inf–sup conditions for twofold saddle point problems , 2011, Numerische Mathematik.

[6]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[7]  Guillaume Jouvet Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers , 2010 .

[8]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[9]  W. Pompe Korn's First Inequality with variable coefficients and its generalization , 2003 .

[10]  H. Blatter,et al.  Dynamics of Ice Sheets and Glaciers , 2009 .

[11]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[12]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[13]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[14]  Jacques Rappaz,et al.  Numerical simulation of Rhonegletscher from 1874 to 2100 , 2009, J. Comput. Phys..

[15]  J. Rappaz,et al.  A strongly nonlinear problem arising in glaciology , 1999 .

[16]  Finite element approximations of a glaciology problem , 2004 .

[17]  J. Rappaz,et al.  MATHEMATICAL AND NUMERICAL ANALYSIS OF A THREE-DIMENSIONAL FLUID FLOW MODEL IN GLACIOLOGY , 2005 .

[18]  H. Blatter Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients , 1995 .

[19]  A. Reist Mathematical analysis and numerical simulation of the motion of a glacier , 2005 .

[20]  W. B. Liu,et al.  Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .

[21]  C. Schoof COULOMB FRICTION AND OTHER SLIDING LAWS IN A HIGHER-ORDER GLACIER FLOW MODEL , 2010 .

[22]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .