Analysis and Finite Element Approximation of a Nonlinear Stationary Stokes Problem Arising in Glaciology
暂无分享,去创建一个
[1] R. Glowinski,et al. APPROXIMATION OF A NONLINEAR ELLIPTIC PROBLEM ARISING IN A NON-NEWTONIAN FLUID FLOW MODEL IN GLACIOLOGY , 2003 .
[2] J. Baranger,et al. Analyse numerique des ecoulements quasi-Newtoniens dont la viscosite obeit a la loi puissance ou la loi de carreau , 1990 .
[3] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[4] Jacques Baranger,et al. Numerical analysis of quasi-Newtonian flow obeying the power low or the Carreau flow , 1990 .
[5] Jason S. Howell,et al. Inf–sup conditions for twofold saddle point problems , 2011, Numerische Mathematik.
[6] Alfio Quarteroni,et al. Domain Decomposition Methods for Partial Differential Equations , 1999 .
[7] Guillaume Jouvet. Modélisation, analyse mathématique et simulation numérique de la dynamique des glaciers , 2010 .
[8] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[9] W. Pompe. Korn's First Inequality with variable coefficients and its generalization , 2003 .
[10] H. Blatter,et al. Dynamics of Ice Sheets and Glaciers , 2009 .
[11] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[12] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[13] V. Girault,et al. Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .
[14] Jacques Rappaz,et al. Numerical simulation of Rhonegletscher from 1874 to 2100 , 2009, J. Comput. Phys..
[15] J. Rappaz,et al. A strongly nonlinear problem arising in glaciology , 1999 .
[16] Finite element approximations of a glaciology problem , 2004 .
[17] J. Rappaz,et al. MATHEMATICAL AND NUMERICAL ANALYSIS OF A THREE-DIMENSIONAL FLUID FLOW MODEL IN GLACIOLOGY , 2005 .
[18] H. Blatter. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients , 1995 .
[19] A. Reist. Mathematical analysis and numerical simulation of the motion of a glacier , 2005 .
[20] W. B. Liu,et al. Quasi-norm Error Bounds for the Nite Element Approximation of a Non-newtonian Ow , 1994 .
[21] C. Schoof. COULOMB FRICTION AND OTHER SLIDING LAWS IN A HIGHER-ORDER GLACIER FLOW MODEL , 2010 .
[22] J. Guermond,et al. Theory and practice of finite elements , 2004 .