Isogeometric analysis on implicit domains using weighted extended PHT-splines

Abstract The urging quest for diminishing the gap between finite element methods and computer-aided design is growing every day. Isogeometric analysis is driving that search a step forward in contrast with traditional finite element methods. One of the areas that need more investigation is using isogeometric analysis on domains that contain singularities. In this case, the parameterization process is occasionally non-trivial, and some of the inherited basis functions are not well defined producing rough solutions. Moreover, NURBS basis functions are not the best choice to perform local refinement since adaptivity is indispensable. In this study, a new approach that serves as a generalization for some of the ideas in both the isogeometric analysis and the WEB method is introduced. Isogeometric analysis on implicit domains replaces mesh generation with implicit spline weight function generation and construct weighted extended PHT-splines for analysis. The geometry and the analysis both are built starting from the same function space avoiding parameterization. The PHT-splines are adaptive and allow local refinement naturally leading to a higher accuracy while dealing with singularities. An illustration with numerical examples demonstrates the efficiency and performance of the proposed method.

[1]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[2]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[3]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[4]  T. I. Sheiko,et al.  R-Functions in Boundary Value Problems in Mechanics , 1995 .

[5]  B. Clark,et al.  The penalty boundary method , 2003 .

[6]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[7]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[8]  R. Gracie,et al.  An enriched finite element model for wave propagation in fractured media , 2017 .

[9]  Bert Jüttler,et al.  H2 regularity properties of singular parameterizations in isogeometric analysis , 2012, Graph. Model..

[10]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[11]  Igor G. Tsukanov,et al.  Meshfree simulation of deforming domains , 1999, Comput. Aided Des..

[12]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[13]  K. Salonitis,et al.  Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review , 2017 .

[14]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[15]  V. Kumar,et al.  Web‐spline‐based finite element approximation of some quasi‐newtonian flows: Existence‐uniqueness and error bound , 2015 .

[16]  Fulya Callialp Kunter,et al.  3D web-splines solution to human eye heat distribution using bioheat equation , 2011 .

[17]  Jiansong Deng,et al.  Two-dimensional domain decomposition based on skeleton computation for parameterization and isogeometric analysis , 2015 .

[18]  Yuri Bazilevs,et al.  Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis , 2017 .

[19]  Gabriel Taubin,et al.  A benchmark for surface reconstruction , 2013, TOGS.

[20]  Takashi Maekawa,et al.  Curvature sensitive analysis of axially compressed cylindrical tubes with corrugated surface using isogeometric analysis and experiment , 2016, Comput. Aided Geom. Des..

[21]  André Galligo,et al.  H1-parametrizations of complex planar physical domains in isogeometric analysis , 2017 .

[22]  Joe Micallef Beginning Design for 3D Printing , 2015, Apress.

[23]  S. Padmanabhan,et al.  Implicit boundary method for finite element analysis using non‐conforming mesh or grid , 2008 .

[24]  K. Höllig Finite element methods with B-splines , 1987 .

[25]  Bert Jüttler,et al.  Least-Squares Fitting of Algebraic Spline Curves via Normal Vector Estimation , 2000, IMA Conference on the Mathematics of Surfaces.

[26]  Gokhan Apaydin,et al.  Application of web-spline method in electromagnetics , 2008 .

[27]  Marlon Franke,et al.  Isogeometric analysis and hierarchical refinement for higher-order phase-field models , 2016 .

[28]  Vadim Shapiro,et al.  On completeness of RFM solution structures , 2000 .

[29]  Klaus Höllig,et al.  Introduction to the Web-method and its applications , 2005, Adv. Comput. Math..

[30]  Muhammad Mustahsan,et al.  Finite element methods with hierarchical WEB-splines , 2011 .

[31]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[32]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[33]  Chandrajit L. Bajaj,et al.  Constructing A-spline weight functions for stable WEB-spline finite element methods , 2010, SPM '10.

[34]  Klaus Höllig,et al.  Programming finite element methods with weighted B-splines , 2015, Comput. Math. Appl..

[35]  J. Foley,et al.  Accurate finite element simulation of stresses for stationary dynamic cracks under impact loading , 2017 .

[36]  Adarsh Krishnamurthy,et al.  Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces , 2017, Comput. Aided Geom. Des..

[37]  F. Duboeuf,et al.  Embedded solids of any dimension in the X-FEM. Part II Imposing Dirichlet boundary conditions , 2017 .

[38]  Cv Clemens Verhoosel,et al.  Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .

[39]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[40]  Andreas Keller,et al.  Finite Element Approximation with Hierarchical B-Splines , 2014, Curves and Surfaces.

[41]  Li Tian,et al.  Adaptive finite element methods for elliptic equations over hierarchical T-meshes , 2011, J. Comput. Appl. Math..

[42]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..

[43]  John A. Evans,et al.  Isogeometric triangular Bernstein–Bézier discretizations: Automatic mesh generation and geometrically exact finite element analysis , 2016 .

[44]  D. L. Young,et al.  Adaptive meshless local maximum-entropy finite element method for convection–diffusion problems , 2014 .

[45]  Bert Jüttler,et al.  Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .

[46]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[47]  R. Maccormack,et al.  Simplified numerical methods for gasdynamic systems on triangulated domains , 1998 .

[48]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[49]  Joe Walsh,et al.  Accessing CAD Geometry for Mesh Generation , 2003, IMR.

[50]  Vibeke Skytt,et al.  Trivariate spline representations for computer aided design and additive manufacturing , 2018, Comput. Math. Appl..

[51]  Xiaohua Zhang,et al.  Variational multiscale element free Galerkin method for natural convection with porous medium flow problems , 2017 .