Fast corotational simulation for example-driven deformation

We present a fast corotational finite element framework for example-driven deformation of 3-dimensional solids. An example-driven deformation space and an example space energy is constructed by introducing the modified linear Cauchy strain with rotation compensation. During this simulation, our adopted total energy functional is quadratic, and its corresponding optimization can be quickly worked out by solving a linear system. For addressing the possible errors, we propose an effective error-correction algorithm. Some related factors including the parameters and example weights are also discussed. Various experiments are demonstrated to show that the proposed method can achieve high quality results. Moreover, our method can avoid complex non-linear optimization, and it outperforms previous methods in terms of the calculation cost and implementation efficiency. Finally, other acceleration algorithms, such as the embedding technique for handling highly detailed meshes, can be easily integrated into our framework.

[1]  Kevin G. Der,et al.  Inverse kinematics for reduced deformable models , 2006, SIGGRAPH 2006.

[2]  宮川翔貴 ”Fast Simulation of Mass‐Spring Systems”の研究報告 , 2016 .

[3]  Takeo Igarashi,et al.  Real-time example-based elastic deformation , 2012, SCA '12.

[4]  Kun Zhou,et al.  Interactive Shape Interpolation through Controllable Dynamic Deformation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Markus H. Gross,et al.  Efficient simulation of example-based materials , 2012, SCA '12.

[6]  Ronald Fedkiw,et al.  Tetrahedral and hexahedral invertible finite elements , 2006, Graph. Model..

[7]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2005, Eurographics.

[8]  Wolfgang Straßer,et al.  Interactive physically-based shape editing , 2009, Comput. Aided Geom. Des..

[9]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[10]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[11]  Andrew Witkin,et al.  Physically Based Modeling: Principles and Practice , 1997 .

[12]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[13]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[14]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[15]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[16]  Jovan Popović,et al.  Mesh-based inverse kinematics , 2005, SIGGRAPH 2005.

[17]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[18]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[19]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[20]  J. Z. Zhu,et al.  The finite element method , 1977 .

[21]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[22]  K. Hormann,et al.  Multi‐Scale Geometry Interpolation , 2010, Comput. Graph. Forum.

[23]  Mario Botsch,et al.  Example‐Driven Deformations Based on Discrete Shells , 2011, Comput. Graph. Forum.

[24]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[25]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[26]  C. Bailey,et al.  A vertex‐based finite volume method applied to non‐linear material problems in computational solid mechanics , 2003 .

[27]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[28]  Markus H. Gross,et al.  Deformable objects alive! , 2012, ACM Trans. Graph..

[29]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[30]  Hujun Bao,et al.  Poisson shape interpolation , 2006, Graph. Model..

[31]  Wolfgang Straßer,et al.  Corotational Simulation of Deformable Solids , 2004, WSCG.