A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air

We report a cathode composed of RuO2 nanoparticle-decorated NiO nanosheets for a non-aqueous lithium–air battery. Unlike most of the previously reported non-aqueous lithium–air batteries that are operated with pure oxygen only, we demonstrate that the present cathode enables the battery to be truly operated in ambient air at 500 mA h g−1 for 200 cycles (800 h), with stable coulombic efficiency (100%) and high energy efficiency (∼75%). The stellar performance is attributed to the favorable combination of RuO2 nanoparticles and NiO nanosheets, which not only catalyzes the oxygen reduction and evolution reactions, but also promotes the decomposition of the side products, including lithium hydroxide and carbonate formed from water and carbon dioxide in the air during discharge.

[1]  G. Graff,et al.  Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte , 2011 .

[2]  D. A. Bograchev,et al.  Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes , 2014, Journal of Solid State Electrochemistry.

[3]  Ping He,et al.  Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O2 batteries , 2015 .

[4]  Hyung-Kyu Lim,et al.  Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. , 2013, Journal of the American Chemical Society.

[5]  Ye Xu,et al.  Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium. , 2012, The journal of physical chemistry letters.

[6]  Min Han,et al.  Fabrication and Performance of All-Solid-State Li-Air Battery with SWCNTs/LAGP Cathode. , 2015, ACS applied materials & interfaces.

[7]  Yugang Sun Lithium ion conducting membranes for lithium-air batteries , 2013 .

[8]  Ping He,et al.  Core-shell-structured CNT@RuO(2) composite as a high-performance cathode catalyst for rechargeable Li-O(2) batteries. , 2014, Angewandte Chemie.

[9]  Tianyi Kou,et al.  Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors , 2015 .

[10]  Tao Zhang,et al.  From Li-O2 to Li-air batteries: carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. , 2012, Angewandte Chemie.

[11]  Wei Liu,et al.  Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air , 2010 .

[12]  Stefano Meini,et al.  Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells. , 2013, Physical chemistry chemical physics : PCCP.

[13]  Haoshen Zhou,et al.  A reversible long-life lithium–air battery in ambient air , 2013, Nature Communications.

[14]  Wei Shyy,et al.  A RuO2 nanoparticle-decorated buckypaper cathode for non-aqueous lithium–oxygen batteries , 2015 .

[15]  Dean J. Miller,et al.  Interfacial effects on lithium superoxide disproportionation in Li-O₂ batteries. , 2015, Nano letters.

[16]  Yuhui Chen,et al.  Charging a Li-O₂ battery using a redox mediator. , 2013, Nature chemistry.

[17]  Haoshen Zhou,et al.  Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery. , 2015, ACS applied materials & interfaces.

[18]  Yongyao Xia,et al.  Humidity effect on electrochemical performance of Li–O2 batteries , 2014 .

[19]  Jianming Bai,et al.  Electrochemical decomposition of Li2CO3 in NiO–Li2CO3 nanocomposite thin film and powder electrodes , 2012 .

[20]  Zhang Zhang,et al.  Rechargeable Li-CO2 batteries with carbon nanotubes as air cathodes. , 2015, Chemical communications.

[21]  Wu Xu,et al.  High Capacity Pouch-Type Li–Air Batteries , 2010 .

[22]  Tianshou Zhao,et al.  A high-rate and long cycle life solid-state lithium–air battery , 2015 .

[23]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[24]  Zhang Zhang,et al.  The First Introduction of Graphene to Rechargeable Li-CO2 Batteries. , 2015, Angewandte Chemie.

[25]  Ji‐Guang Zhang,et al.  Ambient operation of Li/Air batteries , 2010 .

[26]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[27]  Hubert A. Gasteiger,et al.  The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries , 2012 .

[28]  Ruiguo Cao,et al.  Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries. , 2014, Physical chemistry chemical physics : PCCP.

[29]  Jonathon R. Harding,et al.  In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions , 2012, Scientific Reports.

[30]  M. Wohlfahrt‐Mehrens,et al.  Au-coated carbon electrodes for aprotic Li–O2 batteries with extended cycle life: The key issue of the Li-ion source , 2015 .

[31]  K. Kang,et al.  The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. , 2012, Chemical communications.

[32]  Kaiming Liao,et al.  An oxygen cathode with stable full discharge–charge capability based on 2D conducting oxide , 2015 .

[33]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[34]  Jun Lu,et al.  The effect of oxygen crossover on the anode of a Li-O(2) battery using an ether-based solvent: insights from experimental and computational studies. , 2013, ChemSusChem.

[35]  Yongyao Xia,et al.  Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery , 2015 .

[36]  Dong Jin Lee,et al.  Directly grown Co3O4 nanowire arrays on Ni-foam: structural effects of carbon-free and binder-free cathodes for lithium-oxygen batteries , 2014 .

[37]  Tao Zhang,et al.  Superior Performance of a Li–O2 Battery with Metallic RuO2 Hollow Spheres as the Carbon‐Free Cathode , 2015 .

[38]  Ji‐Guang Zhang,et al.  Dendrimer‐Encapsulated Ruthenium Oxide Nanoparticles as Catalysts in Lithium‐Oxygen Batteries , 2014 .

[39]  H. Byon,et al.  Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. , 2013, Nano letters.

[40]  Kevin G. Gallagher,et al.  Quantifying the promise of lithium–air batteries for electric vehicles , 2014 .

[41]  Ruigang Zhang,et al.  Intrinsic Barrier to Electrochemically Decompose Li2CO3 and LiOH , 2014 .

[42]  Tao Zhang,et al.  The water catalysis at oxygen cathodes of lithium–oxygen cells , 2015, Nature Communications.

[43]  R. Sun,et al.  A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. , 2015, Chemical communications.

[44]  Xuemei Li,et al.  Nanosized Mn–Ru binary oxides as effective bifunctional cathode electrocatalysts for rechargeable Li–O2 batteries , 2014 .

[45]  M. Salomon,et al.  Li-air batteries: A classic example of limitations owing to solubilities , 2007 .

[46]  Zhen Wei,et al.  Polyaniline membranes as waterproof barriers for lithium air batteries , 2012 .

[47]  Jian Zhang,et al.  Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries , 2010 .

[48]  Highly branched RuO2 nanoneedles on electrospun TiO2 nanofibers as an efficient electrocatalytic platform. , 2015, ACS applied materials & interfaces.

[49]  Linda F. Nazar,et al.  A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries , 2015 .

[50]  Yingchun Lyu,et al.  Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery , 2014 .

[51]  Jim P. Zheng,et al.  Theoretical Energy Density of Li–Air Batteries , 2008 .

[52]  Hee Cheul Choi,et al.  Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery , 2015 .

[53]  Ding Zhu,et al.  A Li-O₂/air battery using an inorganic solid-state air cathode. , 2014, ACS applied materials & interfaces.

[54]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[55]  Tohru Shiga,et al.  A Li-O2/CO2 battery. , 2011, Chemical communications.

[56]  Dan Zhao,et al.  Reversibility of anodic lithium in rechargeable lithium–oxygen batteries , 2013, Nature Communications.

[57]  Yun‐Sung Lee,et al.  Sea Urchin Shaped α-MnO2/RuO2 Mixed Oxides Nanostructure as Promising Electrocatalyst for Lithium–Oxygen Battery , 2015 .

[58]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[59]  Wei Shyy,et al.  Prediction of the theoretical capacity of non-aqueous lithium-air batteries , 2013 .

[60]  Dan Sun,et al.  A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air , 2013 .

[61]  Tianshou Zhao,et al.  A non-carbon cathode electrode for lithium–oxygen batteries , 2014 .

[62]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[63]  Moran Balaish,et al.  A critical review on lithium-air battery electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[64]  Soo-Jin Park,et al.  Optimization of Carbon‐ and Binder‐Free Au Nanoparticle‐Coated Ni Nanowire Electrodes for Lithium‐Oxygen Batteries , 2015 .

[65]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.