Groupwise pose normalization for craniofacial applications

A general framework is proposed for solving groupwise pose normalization problems and is analyzed in detail under different feature spaces. The analysis shows that using principal component analysis for pose normalization is a special case of using the proposed framework under a special feature space. The experimental results on two cranio-facial datasets show the proposed method achieved promising results for solving groupwise pose normalization problems for craniofacial applications.

[1]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[2]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[3]  David Zhang,et al.  What is wrong with mesh PCA in coordinate direction normalization , 2006, Pattern Recognit..

[4]  Paul L. Rosin,et al.  Rectilinearity of 3D Meshes , 2009, International Journal of Computer Vision.

[5]  Stephen R. Marsland,et al.  A minimum description length objective function for groupwise non-rigid image registration , 2008, Image Vis. Comput..

[6]  Ting Chen,et al.  Group-Wise Point-Set Registration Using a Novel CDF-Based Havrda-Charvát Divergence , 2009, International Journal of Computer Vision.

[7]  Reinhard Klein,et al.  A geometric approach to 3D object comparison , 2001, Proceedings International Conference on Shape Modeling and Applications.

[8]  J. Junkins,et al.  Analytical Mechanics of Space Systems , 2003 .

[9]  Michael Martinek,et al.  Optimal rotation alignment of 3D objects using a GPU-based similarity function , 2009, Comput. Graph..

[10]  Linda G. Shapiro,et al.  3D Point Correspondence by Minimum Description Length in Feature Space , 2010, ECCV.

[11]  Hans-Peter Seidel,et al.  A Statistical Model of Human Pose and Body Shape , 2009, Comput. Graph. Forum.

[12]  Dietmar Saupe,et al.  Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[13]  Frank B. ter Haar,et al.  A 3D face matching framework , 2008, 2008 IEEE International Conference on Shape Modeling and Applications.

[14]  Hans-Peter Meinzer,et al.  3D Active Shape Models Using Gradient Descent Optimization of Description Length , 2005, IPMI.

[15]  Marc Rioux,et al.  Description of shape information for 2-D and 3-D objects , 2000, Signal Process. Image Commun..

[16]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[17]  Anne Verroust-Blondet,et al.  Alignment of 3D models , 2009, Graph. Model..

[18]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[19]  Michael M. Kazhdan An Approximate and Efficient Method for Optimal Rotation Alignment of 3D Models , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[21]  Tanveer F. Syeda-Mahmood,et al.  Generalized L2-Divergence and Its Application to Shape Alignment , 2009, IPMI.

[22]  Hans Henrik Thodberg,et al.  Minimum Description Length Shape and Appearance Models , 2003, IPMI.

[23]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[24]  Dejan V. Vranic,et al.  3D model retrieval , 2004 .

[25]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.