A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates

A new substrate trapping strategy that couples VCP inhibition and quantitative ubiquitin proteomics identifies endogenous ERAD substrates, expanding the available toolbox of strategies for global analysis of the ERAD substrate landscape.

[1]  J. Wade Harper,et al.  Defining human ERAD networks through an integrative mapping strategy , 2011, Nature Cell Biology.

[2]  J. Olzmann,et al.  Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation , 2017, Molecular biology of the cell.

[3]  Pedro Carvalho,et al.  ER-associated degradation: Protein quality control and beyond , 2014, The Journal of cell biology.

[4]  O. Kirak,et al.  Enzymatic Blockade of the Ubiquitin-Proteasome Pathway , 2011, PLoS biology.

[5]  S. Elledge,et al.  Identification of SCF Ubiquitin Ligase Substrates by Global Protein Stability Profiling , 2008, Science.

[6]  S. Jentsch,et al.  Activation of a Membrane-Bound Transcription Factor by Regulated Ubiquitin/Proteasome-Dependent Processing , 2000, Cell.

[7]  J. Olzmann,et al.  Unassembled CD147 is an endogenous endoplasmic reticulum–associated degradation substrate , 2012, Molecular biology of the cell.

[8]  Pedro Carvalho,et al.  Quality control of inner nuclear membrane proteins by the Asi complex , 2014, Science.

[9]  S. Jentsch,et al.  Mobilization of Processed, Membrane-Tethered SPT23 Transcription Factor by CDC48UFD1/NPL4, a Ubiquitin-Selective Chaperone , 2001, Cell.

[10]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[11]  Jeffrey W. Smith,et al.  Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. , 2015, Cancer cell.

[12]  R. McLeod,et al.  Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion , 2014, Journal of biomedical research.

[13]  R. Deshaies,et al.  Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy , 2017, Proceedings of the National Academy of Sciences.

[14]  Qikai Xu,et al.  Global Protein Stability Profiling in Mammalian Cells , 2008, Science.

[15]  D. Toczyski,et al.  Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase–polyubiquitin-binding domain fusions (ligase traps) , 2016, Nature Protocols.

[16]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[17]  Yanji Xu,et al.  Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. , 2012, Journal of proteome research.

[18]  Edward L. Huttlin,et al.  Systematic and quantitative assessment of the ubiquitin-modified proteome. , 2011, Molecular cell.

[19]  J. Harper,et al.  Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification* , 2012, Molecular & Cellular Proteomics.

[20]  J. Brodsky,et al.  How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. , 2013, Biochimica et biophysica acta.

[21]  J. Huibregtse,et al.  Ubiquitin‐Activated Interaction Traps (UBAITs) identify E3 ligase binding partners , 2015, EMBO reports.

[22]  A. J. Gandolfi,et al.  Proteomic identification of ubiquitinated proteins from human cells expressing His‐tagged ubiquitin , 2005, Proteomics.

[23]  S. Jentsch,et al.  Role of the ubiquitin‐selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates , 2002, The EMBO journal.

[24]  B. Song,et al.  Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. , 2005, Molecular cell.

[25]  I. Wada,et al.  Human XTP3-B Forms an Endoplasmic Reticulum Quality Control Scaffold with the HRD1-SEL1L Ubiquitin Ligase Complex and BiP* , 2008, Journal of Biological Chemistry.

[26]  J. Brodsky,et al.  The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. , 2012, Physiological reviews.

[27]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[28]  T. Rapoport,et al.  Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex , 2017, Cell.

[29]  M. Miyazaki,et al.  Recent insights into stearoyl-CoA desaturase-1 , 2003, Current opinion in lipidology.

[30]  J. Olzmann,et al.  A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. , 2018, Developmental cell.

[31]  R. Hegde,et al.  Quality and quantity control at the endoplasmic reticulum. , 2010, Current opinion in cell biology.

[32]  J. Olzmann,et al.  Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis. , 2016, Annual review of nutrition.

[33]  S. Gygi,et al.  mTOR drives its own activation via SCF(βTrCP)-dependent degradation of the mTOR inhibitor DEPTOR. , 2011, Molecular cell.

[34]  Jacob D. Jaffe,et al.  Methods for Quantification of in vivo Changes in Protein Ubiquitination following Proteasome and Deubiquitinase Inhibition* , 2012, Molecular & Cellular Proteomics.

[35]  Y. Ye,et al.  Cleaning up in the endoplasmic reticulum: ubiquitin in charge , 2014, Nature Structural &Molecular Biology.

[36]  C. Fan,et al.  The endoplasmic reticulum–associated Hsp40 DNAJB12 and Hsc70 cooperate to facilitate RMA1 E3–dependent degradation of nascent CFTRΔF508 , 2010, Molecular biology of the cell.

[37]  H. Shu,et al.  The E3 Ubiquitin Ligase RNF5 Targets Virus-Induced Signaling Adaptor for Ubiquitination and Degradation , 2010, The Journal of Immunology.

[38]  Liu Yang,et al.  The Sel1L-Hrd1 Endoplasmic Reticulum-Associated Degradation Complex Manages a Key Checkpoint in B Cell Development. , 2016, Cell reports.

[39]  Y. Ye,et al.  The p97 ATPase associates with EEA1 to regulate the size of early endosomes , 2011, Cell Research.

[40]  Y. Jo,et al.  Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase , 2010, Critical reviews in biochemistry and molecular biology.

[41]  V. Nizet,et al.  Regulation of ATG4B Stability by RNF5 Limits Basal Levels of Autophagy and Influences Susceptibility to Bacterial Infection , 2012, PLoS genetics.

[42]  J. Weissman,et al.  Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. , 2015, Cancer cell.

[43]  C. Fan,et al.  Sequential Quality-Control Checkpoints Triage Misfolded Cystic Fibrosis Transmembrane Conductance Regulator , 2006, Cell.

[44]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[45]  K. Mihara,et al.  Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase , 2006, Journal of Cell Science.

[46]  P. Arvan,et al.  ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. , 2017, The Journal of clinical investigation.

[47]  Y. Ye,et al.  A Mighty “Protein Extractor” of the Cell: Structure and Function of the p97/CDC48 ATPase , 2017, Front. Mol. Biosci..

[48]  T. Veenstra,et al.  The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation , 2007, Nature Medicine.

[49]  A. Nakano,et al.  Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. , 2001, Journal of cell science.

[50]  Bo-Liang Li,et al.  Ablation of gp78 in liver improves hyperlipidemia and insulin resistance by inhibiting SREBP to decrease lipid biosynthesis. , 2012, Cell metabolism.

[51]  J Wade Harper,et al.  Quantifying ubiquitin signaling. , 2015, Molecular cell.

[52]  G. Korza,et al.  The N terminus of microsomal delta 9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[54]  R. Wojcikiewicz,et al.  When worlds collide: IP(3) receptors and the ERAD pathway. , 2009, Cell calcium.

[55]  Joon-No Lee,et al.  Proteasomal degradation of ubiquitinated Insig proteins is determined by serine residues flanking ubiquitinated lysines. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Arvan,et al.  New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. , 2017, Trends in cell biology.

[57]  Keiji Tanaka,et al.  Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. , 2008, Molecular biology of the cell.

[58]  J. Olzmann,et al.  The mammalian endoplasmic reticulum-associated degradation system. , 2013, Cold Spring Harbor perspectives in biology.

[59]  J. Harper,et al.  Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover. , 2013, Molecular cell.

[60]  Christer S. Ejsing,et al.  Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4 , 2013, eLife.

[61]  Steven P Gygi,et al.  A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Andrew J. Brown,et al.  Cholesterol-mediated Degradation of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis* , 2016, The Journal of Biological Chemistry.

[63]  L. Hendershot,et al.  Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. , 2010, Molecular cell.

[64]  Thomas Sommer,et al.  Protein dislocation from the ER. , 2011, Biochimica et biophysica acta.

[65]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[66]  T. Shaler,et al.  OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD , 2008, Nature Cell Biology.

[67]  Andrew J. Brown,et al.  Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase. , 2011, Cell metabolism.

[68]  D. Toczyski,et al.  Ubiquitin ligase trapping identifies an SCF(Saf1) pathway targeting unprocessed vacuolar/lysosomal proteins. , 2014, Molecular cell.

[69]  J. Harper,et al.  SCFFBXO22 Regulates Histone H3 Lysine 9 and 36 Methylation Levels by Targeting Histone Demethylase KDM4A for Ubiquitin-Mediated Proteasomal Degradation , 2011, Molecular and Cellular Biology.

[70]  Kristofor J. Webb,et al.  Using the Ubiquitin-modified Proteome to Monitor Distinct and Spatially Restricted Protein Homeostasis Dysfunction* , 2016, Molecular & Cellular Proteomics.