PSI: A probabilistic semantic interpretable framework for fine‐grained image ranking

Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine‐grained image ranking. We propose to combine attribute‐based representation and online passive‐aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine‐grained image ranking, we introduce a supervised constrained clustering method to gather class‐balanced training instances for local PA‐based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state‐of‐the‐art methods in terms of accuracy and speed.

[1]  Kristen Grauman,et al.  Interactively building a discriminative vocabulary of nameable attributes , 2011, CVPR 2011.

[2]  Young Hwan Kim,et al.  Image Segmentation Using Linked Mean-Shift Vectors and Global/Local Attributes , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[3]  Christoph H. Lampert,et al.  Augmented Attribute Representations , 2012, ECCV.

[4]  Rongrong Ji,et al.  Weak attributes for large-scale image retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  C. V. Jawahar,et al.  Exploring Locally Rigid Discriminative Patches for Learning Relative Attributes , 2015, BMVC.

[6]  Mohamed E. Hussein,et al.  Visual Comparison of Images Using Multiple Kernel Learning for Ranking , 2015, BMVC.

[7]  Vaishali Ganganwar,et al.  An overview of classification algorithms for imbalanced datasets , 2012 .

[8]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[9]  Adriana Kovashka,et al.  Attribute Pivots for Guiding Relevance Feedback in Image Search , 2013, 2013 IEEE International Conference on Computer Vision.

[10]  Alexander C. Berg,et al.  Automatic Attribute Discovery and Characterization from Noisy Web Data , 2010, ECCV.

[11]  Cordelia Schmid,et al.  Combining attributes and Fisher vectors for efficient image retrieval , 2011, CVPR 2011.

[12]  Yong Jae Lee,et al.  End-to-End Localization and Ranking for Relative Attributes , 2016, ECCV.

[13]  Bernard Ghanem,et al.  On the relationship between visual attributes and convolutional networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Anoop Cherian,et al.  DeepPermNet: Visual Permutation Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Yue Gao,et al.  Attribute-augmented semantic hierarchy: towards bridging semantic gap and intention gap in image retrieval , 2013, ACM Multimedia.

[16]  Samy Bengio,et al.  Large Scale Online Learning of Image Similarity Through Ranking , 2009, J. Mach. Learn. Res..

[17]  Samy Bengio,et al.  A Discriminative Kernel-Based Approach to Rank Images from Text Queries , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Rongrong Ji,et al.  Weakly Supervised Multi-Graph Learning for Robust Image Reranking , 2014, IEEE Transactions on Multimedia.

[19]  Christoph H. Lampert,et al.  Learning to detect unseen object classes by between-class attribute transfer , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Chaoran Cui,et al.  Improving image annotation via ranking‐oriented neighbor search and learning‐based keyword propagation , 2014, J. Assoc. Inf. Sci. Technol..

[21]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[22]  Chunyan Miao,et al.  Online multimodal deep similarity learning with application to image retrieval , 2013, ACM Multimedia.

[23]  Yong Rui,et al.  Mining Latent Attributes From Click-Through Logs for Image Recognition , 2015, IEEE Transactions on Multimedia.

[24]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[25]  Alan Hanjalic,et al.  Supervised reranking for web image search , 2010, ACM Multimedia.

[26]  Tao Xiang,et al.  Learning Multimodal Latent Attributes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ali Farhadi,et al.  Describing objects by their attributes , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Hanhui Li,et al.  Boosting attribute recognition with latent topics by matrix factorization , 2017, J. Assoc. Inf. Sci. Technol..

[29]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[30]  Changsheng Xu,et al.  Hi, magic closet, tell me what to wear! , 2012, ACM Multimedia.

[31]  Tao Xiang,et al.  Weakly-Supervised Image Annotation and Segmentation with Objects and Attributes , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Kristen Grauman,et al.  Fine-Grained Visual Comparisons with Local Learning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Larry S. Davis,et al.  Image ranking and retrieval based on multi-attribute queries , 2011, CVPR 2011.

[34]  Geoffrey E. Hinton,et al.  Visualizing non-metric similarities in multiple maps , 2011, Machine Learning.

[35]  Gang Wang,et al.  Multi-Task CNN Model for Attribute Prediction , 2015, IEEE Transactions on Multimedia.

[36]  Inderjit S. Dhillon,et al.  Information-theoretic metric learning , 2006, ICML '07.

[37]  Kristen Grauman,et al.  Relative attributes , 2011, 2011 International Conference on Computer Vision.

[38]  Rong Ge,et al.  Constraint-driven clustering , 2007, KDD '07.

[39]  Youngok Choi,et al.  Analysis of image search queries on the web: Query modification patterns and semantic attributes , 2013, J. Assoc. Inf. Sci. Technol..

[40]  Shuicheng Yan,et al.  Attribute feedback , 2012, ACM Multimedia.

[41]  Daniel Tretter,et al.  Personal Clothing Retrieval on Photo Collections by Color and Attributes , 2013, IEEE Transactions on Multimedia.

[42]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[43]  Ehsan Adeli,et al.  Deep Relative Attributes , 2015, ACCV.

[44]  Adriana Kovashka,et al.  WhittleSearch: Image search with relative attribute feedback , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Yong Jae Lee,et al.  Discovering the Spatial Extent of Relative Attributes , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[46]  Kristen Grauman,et al.  Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[47]  Jingdong Wang,et al.  Robust visual reranking via sparsity and ranking constraints , 2011, ACM Multimedia.

[48]  Yan-Ying Chen,et al.  Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords , 2013, IEEE Transactions on Multimedia.

[49]  Qiang Chen,et al.  Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[50]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.