Dynamic Graphs in the Sliding-Window Model

We present the first algorithms for processing graphs in the sliding-window model. The sliding window model, introduced by Datar et al. (SICOMP 2002), has become a popular model for processing infinite data streams in small space when older data items (i.e., those that predate a sliding window containing the most recent data items) are considered “stale” and should implicitly be ignored. While processing massive graph streams is an active area of research, it was hitherto unknown whether it was possible to analyze graphs in the sliding-window model. We present an extensive set of positive results including algorithms for constructing basic graph synopses like combinatorial sparsifiers and spanners as well as approximating classic graph properties such as the size of a graph matching or minimum spanning tree.

[1]  Leah Epstein,et al.  On the online unit clustering problem , 2007, TALG.

[2]  Mikhail Kapralov,et al.  Better bounds for matchings in the streaming model , 2012, SODA.

[3]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[4]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[5]  Christopher Charnes,et al.  Algorithms and Theory of Computation Handbook , 2009 .

[6]  R. Ostrovsky,et al.  Smooth Histograms for Sliding Windows , 2007, FOCS 2007.

[7]  Sudipto Guha,et al.  Graph sketches: sparsification, spanners, and subgraphs , 2012, PODS.

[8]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 1998, STOC '98.

[9]  Mariano Zelke,et al.  Weighted Matching in the Semi-Streaming Model , 2007, Algorithmica.

[10]  David Eppstein,et al.  Dynamic graph algorithms , 2010 .

[11]  Leah Epstein,et al.  Improved Approximation Guarantees for Weighted Matching in the Semi-streaming Model , 2009, SIAM J. Discret. Math..

[12]  Bernard Chazelle,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[13]  L. Bazzi Polylogarithmic Independence Can Fool DNF Formulas , 2007, FOCS 2007.

[14]  GalilZvi,et al.  Sparsificationa technique for speeding up dynamic graph algorithms , 1997 .

[15]  Sorin C. Popescu,et al.  Lidar Remote Sensing , 2011 .

[16]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[17]  Ashish Goel,et al.  Single pass sparsification in the streaming model with edge deletions , 2012, ArXiv.

[18]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[19]  Rajeev Motwani,et al.  Sampling from a moving window over streaming data , 2002, SODA '02.

[20]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[21]  Michael Elkin,et al.  Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners , 2007, TALG.

[22]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[23]  Sudipto Guha,et al.  Graph Sparsification in the Semi-streaming Model , 2009, ICALP.

[24]  Andrew McGregor,et al.  Finding Graph Matchings in Data Streams , 2005, APPROX-RANDOM.

[25]  Mikkel Thorup,et al.  Near-optimal fully-dynamic graph connectivity , 2000, STOC '00.

[26]  Rafail Ostrovsky,et al.  How to catch L2-heavy-hitters on sliding windows , 2010, Theor. Comput. Sci..

[27]  Gurmeet Singh Manku,et al.  Approximate counts and quantiles over sliding windows , 2004, PODS.

[28]  Debmalya Panigrahi,et al.  A general framework for graph sparsification , 2010, STOC '11.

[29]  Joan Feigenbaum,et al.  Computing Diameter in the Streaming and Sliding-Window Models , 2002, Algorithmica.

[30]  Joan Feigenbaum,et al.  On graph problems in a semi-streaming model , 2005, Theor. Comput. Sci..

[31]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[32]  Surender Baswana,et al.  Streaming algorithm for graph spanners - single pass and constant processing time per edge , 2008, Inf. Process. Lett..

[33]  Mikhail J. Atallah,et al.  Algorithms and Theory of Computation Handbook , 2009, Chapman & Hall/CRC Applied Algorithms and Data Structures series.

[34]  Sudipto Guha,et al.  Analyzing graph structure via linear measurements , 2012, SODA.

[35]  Rajeev Motwani,et al.  Maintaining variance and k-medians over data stream windows , 2003, PODS.

[36]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[37]  Jeffrey F. Naughton,et al.  Static optimization of conjunctive queries with sliding windows over infinite streams , 2004, SIGMOD '04.