Protostellar Disks: Formation, Fragmentation, and the Brown Dwarf Desert

We argue that gravitational instability of typical protostellar disks is not a viable mechanism for the fragmentation into multiple systems (binary stars, brown dwarf companions, or gas giant planets) except at periods above roughly 20,000 yr. Our conclusion is based on a comparison between prior numerical work on disk self-gravity by Gammie and our own analytical models for the dynamical and thermal state of protostellar disks. For this purpose we first develop a simple theory for the initial conditions of low-mass star formation, accounting for the effect of turbulence on the characteristic mass, accretion rate, and angular momentum of collapsing cores. We also present formulae for the probability distribution of these quantities for the case of homogeneous Gaussian turbulence. However, our conclusions are not sensitive to this parameterization. Second, we examine the criterion for fragmentation to occur during star formation, concentrating on the self-gravitational instabilities of protostellar accretion disks in their main accretion phase. Self-gravitational instabilities are strongly dependent on the thermal state of the disk, and we find that the combination of viscous heating and stellar irradiation quenches fragmentation due to Toomre's local instability. Simulations by Matsumoto & Hanawa, which do not include detailed thermal evolution, predict fragmentation in an early phase of collapse. But, fragments born in this phase are on tight orbits and are likely to merge later due to disk accretion. Global instability of the disk may be required to process mass supply, but this is also unlikely to produce fragments. We conclude that numerical simulations that predict brown dwarf formation by disk fragmentation but do not account for irradiation are unrealistic. Our findings help to explain the dearth of substellar companions to stellar-type stars: the brown dwarf desert.

[1]  E. Rosolowsky,et al.  Giant Molecular Clouds in M33. II. High-Resolution Observations , 2003, astro-ph/0307322.

[2]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[3]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[4]  C. Masson,et al.  A 45 AU Radius Source around L1551-IRS 5: A Possible Accretion Disk , 1990 .

[5]  E. Zweibel,et al.  Alfven Waves in Interstellar Gasdynamics , 1995 .

[6]  R. Rafikov,et al.  Can Giant Planets Form by Direct Gravitational Instability , 2005 .

[7]  P. Bodenheimer,et al.  Nonaxisymmetric evolution in protostellar disks , 1994 .

[8]  T. Nakano Star Formation in Magnetic Clouds , 1998 .

[9]  P. Armitage,et al.  The brown dwarf desert as a consequence of orbital migration , 2001, astro-ph/0112001.

[10]  Multipressure Polytropes as Models for the Structure and Stability of Molecular Clouds. I. Theory , 1999, astro-ph/9903213.

[11]  D. Johnstone,et al.  Large Area Mapping at 850 Microns. III. Analysis of the Clump Distribution in the Orion B Molecular Cloud , 2001 .

[12]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[13]  P. J. Armitage,et al.  The effect of cooling on the global stability of self-gravitating protoplanetary discs , 2003 .

[14]  D. Jaffe,et al.  Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity , 1997, astro-ph/9712158.

[15]  I. Bonnell,et al.  ACCRETION DURING BINARY STAR FORMATION. II : GASEOUS ACCRETION AND DISC FORMATION , 1997 .

[16]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[17]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[18]  R. Klein,et al.  The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries? , 2000 .

[19]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[20]  D. Lin,et al.  USING FU ORIONIS OUTBURSTS TO CONSTRAIN SELF-REGULATED PROTOSTELLAR DISK MODELS , 1993, astro-ph/9312015.

[21]  A. Whitworth,et al.  Protostellar collapse induced by compression , 2002, astro-ph/0206044.

[22]  Richard I. Klein,et al.  The Jeans Condition: A New Constraint on Spatial Resolution in Simulations of Isothermal Self-Gravitational Hydrodynamics , 1997 .

[23]  P. Cassen,et al.  Thermal Processing of Interstellar Dust Grains in the Primitive Solar Environment , 1997 .

[24]  Alyssa A. Goodman,et al.  Dense cores in dark clouds. VIII - Velocity gradients , 1993 .

[25]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[26]  J. E. Pringle,et al.  A viscosity prescription for a self-gravitating accretion disc⋆ , 1987 .

[27]  F. Adams,et al.  Dense Cores Mapped in Ammonia: A Database , 1999 .

[28]  G. Fuller,et al.  Density Structure and Star Formation in Dense Cores with Thermal and Nonthermal Motions , 1992 .

[29]  The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds , 1998, astro-ph/9809177.

[30]  P. Caselli,et al.  On the internal structure of starless cores - I. Physical conditions and the distribution of CO, CS, N$\mathsf{_2}$H$\mathsf{^+}$, and NH$\mathsf{_3}$ in L1498 and L1517B , 2004 .

[31]  P. Cassen,et al.  The Transport of Thermal Radiation in a Protostellar Envelope , 1996 .

[32]  A. G. W. Cameron,et al.  Physics of the primitive solar accretion disk , 1978 .

[33]  P. Bodenheimer,et al.  Turbulent Molecular Cloud Cores: Rotational Properties , 2000, astro-ph/0006010.

[34]  A. Sargent,et al.  Anatomy of a merger : CO in Arp 299 (IC 694-NGC 3690) , 1991 .

[35]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[36]  R. Fisher A Turbulent Interstellar Medium Origin of the Binary Period Distribution , 2003, astro-ph/0303280.

[37]  C. McKee,et al.  The Formation of Massive Stars from Turbulent Cores , 2002, astro-ph/0206037.

[38]  Ralf Klessen,et al.  (ACCEPTED FOR PUBLICATION IN APJ) Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FORMATION OF STELLAR CLUSTERS: MASS SPECTRA FROM TURBULENT MOLECULAR CLOUD , 2001 .

[39]  J. Richer,et al.  Completion of a SCUBA Survey of Lynds Dark Clouds and Implications for Low-mass Star Formation , 2002 .

[40]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[41]  P. Myers,et al.  A survey for dense cores in dark clouds , 1989 .

[42]  Dynamics of Circumstellar Disks. II. Heating and Cooling , 1999, astro-ph/9908146.

[43]  Tatsuo Yoshida,et al.  High accretion rate during class 0 phase due to external trigger , 2003, astro-ph/0305509.

[44]  R. Narayan,et al.  The stability of accretion tori. I. Long-wavelength modes of slender tori , 1986 .

[45]  P. Cassen,et al.  The Effects of Thermal Energetics on Three-dimensional Hydrodynamic Instabilities in Massive Protostellar Disks , 1998 .

[46]  Gregory Laughlin,et al.  The Dynamics of Heavy Gaseous Disks , 1998 .

[47]  P. Cassen,et al.  Further Studies of Gravitationally Unstable Protostellar Disks , 1994 .

[48]  I. Bonnell A new binary formation mechanism , 1994 .

[49]  Efficiencies of Low-Mass Star and Star Cluster Formation , 2000, astro-ph/0007383.

[50]  C. Clarke,et al.  Competitive accretion in embedded stellar clusters , 2001, astro-ph/0102074.

[51]  B. Reipurth,et al.  The Formation of Brown Dwarfs as Ejected Stellar Embryos , 2001, astro-ph/0103019.

[52]  Jeremy Goodman,et al.  Selfgravity and QSO disks , 2002, astro-ph/0201001.

[53]  D. Johnstone,et al.  An Extinction Threshold for Protostellar Cores in Ophiuchus , 2004, astro-ph/0406640.

[54]  Composite Polytrope Models of Molecular Clouds. I. Theory , 1999, astro-ph/9908071.

[55]  R. H. Miller,et al.  Numerical experiments on the stability of preplanetary disks , 1981 .

[56]  P. Cassen,et al.  The Effects of Thermal Energetics on Three-dimensional Hydrodynamic Instabilities in Massive Protostellar Disks , 1998 .

[57]  J. Papaloizou,et al.  Instabilities in self-gravitating gaseous discs , 1991 .

[58]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Cooling, Gaseous Disks , 2001, astro-ph/0101501.

[59]  P. Padoan,et al.  ul 2 00 2 The Stellar IMF from Turbulent Fragmentation , 2002 .

[60]  T. Quinn,et al.  Formation of Giant Planets by Fragmentation of Protoplanetary Disks , 2002, Science.

[61]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .

[62]  D. Lin,et al.  The formation and initial evolution of protostellar disks , 1990 .

[63]  R. Larson Thermal physics, cloud geometry and the stellar initial mass function , 2005 .

[64]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[65]  G. Fuller,et al.  Thermal Material in Dense Cores: A New Narrow-Line Probe and Technique of Temperature Determination , 1993 .

[66]  J. E. Tohline THE ORIGIN OF BINARY STARS , 2002 .

[67]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[68]  Tomoaki Matsumoto,et al.  Fragmentation of a Molecular Cloud Core versus Fragmentation of the Massive Protoplanetary Disk in the Main Accretion Phase , 2003 .

[69]  B. Jones,et al.  The universality of the stellar initial mass function , 1997 .

[70]  David R. Alexander,et al.  Low-Temperature Rosseland Opacities , 1975 .

[71]  F. Hoyle On the Fragmentation of Gas Clouds Into Galaxies and Stars. , 1953 .

[72]  Fred C. Adams,et al.  Sling amplification and eccentric gravitational instabilities in gaseous disks , 1990 .

[73]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[74]  Volker Bromm,et al.  The formation of a star cluster: predicting the properties of stars and brown dwarfs , 2002, astro-ph/0212380.

[75]  Y. Fukui,et al.  A study of dense cloud cores and star formation in Lupus , 1999 .

[76]  Accretion and Outflow in the Substellar Domain: Magellan Spectroscopy of LS-RCrA 1 , 2003, astro-ph/0312037.

[77]  G. Laughlin,et al.  The Effect of Gravitational Instabilities on Protostellar Disks , 1996 .

[78]  J. Devriendt,et al.  Turbulent Ambipolar Diffusion: Numerical Studies in Two Dimensions , 2003, astro-ph/0309306.

[79]  Charles F. Gammie,et al.  Nonlinear Outcome of Gravitational Instability in Disks with Realistic Cooling , 2003, astro-ph/0312507.

[80]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[81]  Dense gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers. , 1996, astro-ph/9609061.

[82]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[83]  A. Natta The temperature profile of T Tauri disks , 1993 .

[84]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[85]  Cambridge,et al.  Testing the locality of transport in self-gravitating accretion discs , 2004 .

[86]  P. Cassen,et al.  Evolution of Gravitationally Unstable Protostellar DIsks , 1991 .

[87]  E. Zweibel,et al.  Hydromagnetic wave dissipation in molecular clouds , 1983 .

[88]  B. Jones,et al.  The Universality of the Stellar IMF , 1997, astro-ph/9703110.

[89]  The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks , 2003 .

[90]  Jeremy Goodman,et al.  Self-gravity and quasi-stellar object discs , 2003 .

[91]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[92]  C. McKee,et al.  Bipolar Molecular Outflows Driven by Hydromagnetic Protostellar Winds. , 1999, The Astrophysical journal.

[93]  B. Soifer,et al.  Dust and gas in the core of Arp 220 (IC 4553) , 1991 .

[94]  Nuria Calvet,et al.  The Structure and Emission of Accretion Disks Irradiated by Infalling Envelopes , 1997 .

[95]  Ben Zuckerman,et al.  The Brown Dwarf Desert at 75-1200 AU , 2004 .

[96]  T. Henning,et al.  Rosseland and Planck mean opacities for protoplanetary discs , 2003, astro-ph/0308344.

[97]  Jonathan C. Tan,et al.  Supermassive Stars in Quasar Disks , 2004 .