Hankel hyperdeterminants and Selberg integrals

We investigate the simplest class of hyperdeterminants defined by Cayley in the case of Hankel hypermatrices (tensors of the form Ai1i2...ik = f(i1 + i2 + ... + ik)). It is found that many classical properties of Hankel determinants can be generalized, and a connection with Selberg type integrals is established. In particular, Selberg's original formula amounts to the evaluation of all Hankel hyperdeterminants built from the moments of the Jacobi polynomials. Many higher dimensional analogues of classical Hankel determinants are evaluated in closed form. The Toeplitz case is also briefly discussed. In physical terms, both cases are related to the partition functions of one-dimensional Coulomb systems with logarithmic potential.

[1]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[2]  T. B.,et al.  The Theory of Determinants , 1904, Nature.

[3]  Samuel Karlin,et al.  On certain determinants whose elements are orthogonal polynomials , 1960 .

[4]  The function and associated polynomials , 1951 .

[5]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[6]  Michel Carpentier,et al.  Polynômes de Jacobi généralisés et intégrales de Selberg , 1995, Electron. J. Comb..

[7]  M. Lassalle,et al.  Polynômes de Hermite généralisés , 1991 .

[8]  P. Haukkanen Higher-dimensional gcd matrices , 1992 .

[9]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[10]  Lars Vretare,et al.  Formulas for Elementary Spherical Functions and Generalized Jacobi Polynomials , 1984 .

[11]  M.A. Cayley Mémoire sur les Hyperdéterminants. , .

[12]  M. Lassalle,et al.  Polynômes de Laguerre généralisés , 1991 .

[13]  David W. Lewis,et al.  Matrix theory , 1991 .

[14]  POLYNOMES DE JACOBI GENERALISES , 1991 .

[15]  Alexander I. Barvinok,et al.  New algorithms for lineark-matroid intersection and matroidk-parity problems , 1995, Math. Program..

[16]  Bernard Leclerc,et al.  On certain formulas of Karlin and Szegö. , 1998 .

[17]  B. M. Fulk MATH , 1992 .

[18]  A. Debiard Systeme differentiel hypergeometrique et parties radiales des operateurs invariants des espaces symetriques de type BC p , 1987 .

[19]  J.-Y. Thibon,et al.  Pfaffian and Hafnian identities in shuffle algebras , 2002, Adv. Appl. Math..

[20]  Arthur Cayley Mémoire sur les Hyperdéterminants. , 1846 .

[21]  K. Aomoto,et al.  Jacobi polynomials associated with Selberg integrals , 1987 .

[22]  Robert Vein,et al.  Determinants and their applications in mathematical physics , 1998 .

[23]  Jyoichi Kaneko,et al.  Selberg integrals and hypergeometric functions associated with Jack polynomials , 1993 .

[24]  P. Forrester Random matrices, log-gases and the Calogero-Sutherland model , 1998 .

[25]  P. Forrester,et al.  The Calogero-Sutherland Model and Generalized Classical Polynomials , 1996, solv-int/9608004.

[26]  F. Gherardelli Osservazioni sugli iperdeterminanti , 1993 .

[27]  G. Rota,et al.  The invariant theory of binary forms , 1984 .

[28]  Karol A. Penson,et al.  Coherent States from Combinatorial Sequences , 2001 .

[29]  C. Krattenthaler ADVANCED DETERMINANT CALCULUS , 1999, math/9902004.

[30]  Gérard Viennot,et al.  Enumeration of certain young tableaux with bounded height , 1986 .

[31]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[32]  K. Penson,et al.  Integral Representations of Catalan and Related Numbers , 2001 .

[33]  Ulrich Tamm,et al.  Some Aspects of Hankel Matrices in Coding Theory and Combinatorics , 2001, Electron. J. Comb..

[34]  B. G. Wybourne,et al.  Powers of the Vandermonde determinant and the quantum Hall effect , 1994 .

[35]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .