Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane.

[1]  L. Diels,et al.  Benchmark study on algae harvesting with backwashable submerged flat panel membranes. , 2013, Bioresource technology.

[2]  M. Bilad,et al.  Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration. , 2013, Bioresource technology.

[3]  Joan Salvadó,et al.  Antifouling microfiltration strategies to harvest microalgae for biofuel. , 2012, Bioresource technology.

[4]  Tianzhong Liu,et al.  Harvesting of microalgae Scenedesmus sp. using polyvinylidene fluoride microfiltration membrane , 2012 .

[5]  M R Bilad,et al.  Harvesting microalgal biomass using submerged microfiltration membranes. , 2012, Bioresource technology.

[6]  Joan Salvadó,et al.  Dynamic Microfiltration in Microalgae Harvesting for Biodiesel Production , 2011 .

[7]  Q. Hu,et al.  Harvesting algal biomass for biofuels using ultrafiltration membranes. , 2010, Bioresource technology.

[8]  Vicki Chen,et al.  Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities , 2010 .

[9]  Kai Zhang,et al.  Influence of cross-flow velocity on membrane performance during filtration of biological suspension , 2005 .

[10]  S. W. Kim,et al.  Effects of NO and SO2 on growth of highly-CO2-tolerant microalgae , 2000 .

[11]  Pascal Jaouen,et al.  Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration , 1999 .

[12]  C. Yeom,et al.  Pervaporation separation of water-acetic acid mixtures through poly(vinyl alcohol) membranes crosslinked with glutaraldehyde , 1996 .