Fast segment insertion and incremental construction of constrained delaunay triangulations
暂无分享,去创建一个
[1] D. T. Lee,et al. Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..
[2] Bernard Chazelle. Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..
[3] J. Steiner. Einige Gesetze über die Theilung der Ebene und des Raumes. , 1826 .
[4] F. Hermeline,et al. Triangulation automatique d'un polyèdre en dimension $N$ , 1982 .
[5] Jonathan Richard Shewchuk,et al. Updating and constructing constrained delaunay and constrained regular triangulations by flips , 2003, SCG '03.
[6] Pankaj K. Agarwal,et al. I/O-Efficient Construction of Constrained Delaunay Triangulations , 2005, ESA.
[7] Jonathan Richard Shewchuk,et al. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..
[8] R. Seidel. Backwards Analysis of Randomized Geometric Algorithms , 1993 .
[9] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[10] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[11] Kenneth L. Clarkson,et al. New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..
[12] Gary L. Miller,et al. Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.
[13] Tamal K. Dey,et al. Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.
[14] David Haussler,et al. ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..
[15] Mark Howison. CAD Tools for Creating Space-filing 3D Escher Tiles , 2009 .
[16] S. Ross,et al. THE COUPON-COLLECTOR'S PROBLEM REVISITED , 2003 .
[17] Sheldon M. Ross,et al. COUPON COLLECTING , 2008, Probability in the Engineering and Informational Sciences.
[18] Marc Vigo Anglada,et al. An improved incremental algorithm for constructing restricted delaunay triangulations , 1997, Comput. Graph..
[19] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[20] Andrzej Lingas,et al. A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.
[21] Jonathan Richard Shewchuk,et al. Incrementally constructing and updating constrained Delaunay tetrahedralizations with finite-precision coordinates , 2013, Engineering with Computers.
[22] Jonathan Richard Shewchuk,et al. Higher-Quality Tetrahedral Mesh Generation for Domains with Small Angles by Constrained Delaunay Refinement , 2014, SoCG.
[23] Kenneth L. Clarkson,et al. RANDOMIZED GEOMETRIC ALGORITHMS , 1992 .
[24] Raimund Seidel,et al. On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..
[25] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[26] R. Pollack,et al. On the number of cells defined by a set of polynomials , 1993 .
[27] Francis Y. L. Chin,et al. Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..
[28] D. T. Lee,et al. Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.
[29] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[30] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[31] Steve Fortune. Proceedings of the nineteenth annual symposium on Computational geometry , 2000, SoCG 2003.
[32] Jonathan Richard Shewchuk,et al. Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery , 2002, IMR.
[33] L. Chew. Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .
[34] R. Kaas,et al. Mean, Median and Mode in Binomial Distributions , 1980 .
[35] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[36] Micha Sharir,et al. Arrangements and Their Applications , 2000, Handbook of Computational Geometry.
[37] Andrzej Lingas,et al. A Note on Generalizations of Chew's Algorithm for the Voronoi Diagram of a Convex Polygon , 1993, CCCG.
[38] Günter Rote,et al. Incremental constructions con BRIO , 2003, SCG '03.
[39] Klaus Gärtner,et al. Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.
[40] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[41] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[42] H. Si. Constrained Delaunay tetrahedral mesh generation and refinement , 2010 .