Fast segment insertion and incremental construction of constrained delaunay triangulations

The most commonly implemented method of constructing a constrained Delaunay triangulation (CDT) in the plane is to first construct a Delaunay triangulation, then incrementally insert the input segments one by one. For typical implementations of segment insertion, this method has a Θ(kn2) worst-case running time, where n is the number of input vertices and k is the number of input segments. We give a randomized algorithm for inserting a segment into a CDT in expected time linear in the number of edges the segment crosses, and demonstrate with a performance comparison that it is faster than gift-wrapping for segments that cross many edges. A result of Agarwal, Arge, and Yi implies that randomized incremental construction of CDTs by our segment insertion algorithm takes expected O(n log n + n log2 k) time. We show that this bound is tight by deriving a matching lower bound. Although there are CDT construction algorithms guaranteed to run in O(n log n) time, incremental CDT construction is easier to program and competitive in practice. Moreover, the ability to incrementally update a CDT by inserting a segment is useful in itself.

[1]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[2]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[3]  J. Steiner Einige Gesetze über die Theilung der Ebene und des Raumes. , 1826 .

[4]  F. Hermeline,et al.  Triangulation automatique d'un polyèdre en dimension $N$ , 1982 .

[5]  Jonathan Richard Shewchuk,et al.  Updating and constructing constrained delaunay and constrained regular triangulations by flips , 2003, SCG '03.

[6]  Pankaj K. Agarwal,et al.  I/O-Efficient Construction of Constrained Delaunay Triangulations , 2005, ESA.

[7]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[8]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[9]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[10]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[11]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[12]  Gary L. Miller,et al.  Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.

[13]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[14]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[15]  Mark Howison CAD Tools for Creating Space-filing 3D Escher Tiles , 2009 .

[16]  S. Ross,et al.  THE COUPON-COLLECTOR'S PROBLEM REVISITED , 2003 .

[17]  Sheldon M. Ross,et al.  COUPON COLLECTING , 2008, Probability in the Engineering and Informational Sciences.

[18]  Marc Vigo Anglada,et al.  An improved incremental algorithm for constructing restricted delaunay triangulations , 1997, Comput. Graph..

[19]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[20]  Andrzej Lingas,et al.  A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.

[21]  Jonathan Richard Shewchuk,et al.  Incrementally constructing and updating constrained Delaunay tetrahedralizations with finite-precision coordinates , 2013, Engineering with Computers.

[22]  Jonathan Richard Shewchuk,et al.  Higher-Quality Tetrahedral Mesh Generation for Domains with Small Angles by Constrained Delaunay Refinement , 2014, SoCG.

[23]  Kenneth L. Clarkson,et al.  RANDOMIZED GEOMETRIC ALGORITHMS , 1992 .

[24]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[25]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[26]  R. Pollack,et al.  On the number of cells defined by a set of polynomials , 1993 .

[27]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[28]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[29]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[30]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[31]  Steve Fortune Proceedings of the nineteenth annual symposium on Computational geometry , 2000, SoCG 2003.

[32]  Jonathan Richard Shewchuk,et al.  Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery , 2002, IMR.

[33]  L. Chew Building Voronoi Diagrams for Convex Polygons in Linear Expected Time , 1990 .

[34]  R. Kaas,et al.  Mean, Median and Mode in Binomial Distributions , 1980 .

[35]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[36]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[37]  Andrzej Lingas,et al.  A Note on Generalizations of Chew's Algorithm for the Voronoi Diagram of a Convex Polygon , 1993, CCCG.

[38]  Günter Rote,et al.  Incremental constructions con BRIO , 2003, SCG '03.

[39]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[40]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[41]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[42]  H. Si Constrained Delaunay tetrahedral mesh generation and refinement , 2010 .