Hybridizing sparse component analysis with genetic algorithms for microarray analysis

Nonnegative matrix factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to blind source separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.

[1]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[2]  Hichem Snoussi The geometry of prior selection , 2005, Neurocomputing.

[3]  Elmar Lang,et al.  A Matrix Pencil Approach to the Blind Source Separation of Artifacts in 2D NMR Spectra , 2003 .

[5]  Fabian J. Theis,et al.  Grassmann clustering , 2006, 2006 14th European Signal Processing Conference.

[6]  Fabian J. Theis,et al.  Separation of water artifacts in 2D NOESY protein spectra using congruent matrix pencils , 2006, Neurocomputing.

[7]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[8]  Steve McLaughlin,et al.  Proceedings of the 8th European Signal Processing Conference (EUSIPCO) , 1994 .

[9]  Erkki Oja,et al.  Image feature extraction by sparse coding and independent component analysis , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[10]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[11]  Mark D. Plumbley Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras , 2005, Neurocomputing.

[12]  Harri Valpola,et al.  Denoising Source Separation , 2005, J. Mach. Learn. Res..

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 2000, Springer Berlin Heidelberg.

[14]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[15]  Fabian J. Theis,et al.  3D Spatial Analysis of fMRI Data on a Word Perception Task , 2004, ICA.

[16]  D. Ruderman The statistics of natural images , 1994 .

[17]  Fabian J. Theis,et al.  Denoising using local projective subspace methods , 2006, Neurocomputing.

[18]  Erkki Oja,et al.  Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings , 1997, NIPS.

[19]  Partha S. Vasisht Computational Analysis of Microarray Data , 2003 .

[20]  Shun-ichi Amari,et al.  Geometrical methods in neural networks and learning , 2005, Neurocomputing.

[21]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[22]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[23]  David P. Kreil,et al.  Independent Component Analysis of Microarray Data in the Study of Endometrial Cancer ( Brief Title : Independent Component Analysis for Gene Arrays ) , 2003 .

[24]  Carlos G. Puntonet,et al.  Neural net approach for blind separation of sources based on geometric properties , 1998, Neurocomputing.

[25]  Fabian J. Theis,et al.  Linear Geometric ICA: Fundamentals and Algorithms , 2003, Neural Computation.

[26]  K. Stadlthanner,et al.  Blind source separation using time-delayed signals , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[27]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[28]  Shun-ichi Amari,et al.  Editorial : Special issue on “ Geometrical Methods in Neural Networks and Learning ” , .

[29]  Christopher M. Bishop,et al.  Advances in Neural Information Processing Systems 8 (NIPS 1995) , 1991 .

[30]  Elmar Lang,et al.  Analyzing Brain Tumor related EEG Signals with ICA Algorithms , 2000, ANNIMAB.

[31]  Bruno Torrésani,et al.  Blind Source Separation and the Analysis of Microarray Data , 2004, J. Comput. Biol..

[32]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[33]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[34]  G. W. Hatfield,et al.  DNA microarrays and gene expression , 2002 .

[35]  David P. Kreil,et al.  Independent component analysis of microarray data in the study of endometrial cancer , 2004, Oncogene.

[36]  E. Oja,et al.  Independent Component Analysis , 2013 .

[37]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[38]  Fabian J. Theis,et al.  Analyzing gene expression profiles with ICA , 2006 .

[39]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[40]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[41]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[42]  Yuanqing Li,et al.  Analysis of Sparse Representation and Blind Source Separation , 2004, Neural Computation.

[43]  Andrzej Cichocki,et al.  Multilayer Nonnegative Matrix Factorization Using Projected Gradient Approaches , 2007, Int. J. Neural Syst..

[44]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[45]  S. Batzoglou,et al.  Application of independent component analysis to microarrays , 2003, Genome Biology.

[46]  Jagath C. Rajapakse,et al.  ICA Gives Higher-Order Functional Connectivity of Brain , 2004 .

[47]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[48]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.