Exploring foraminiferal Sr/Ca as a new carbonate system proxy

[1]  S. Eggins,et al.  Trace element proxies for surface ocean conditions: A synthesis of culture calibrations with planktic foraminifera , 2016 .

[2]  Nienke N. Bijma,et al.  Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa , 2016 .

[3]  G. Nehrke,et al.  Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry , 2014 .

[4]  G. Reichart,et al.  Effect of different seawater Mg2 + concentrations on calcification in two benthic foraminifers , 2014, Marine micropaleontology.

[5]  E. Rohling,et al.  Controls on Sr/Ca in benthic foraminifera and implications for seawater Sr/Ca during the late Pleistocene , 2014 .

[6]  J. Erez,et al.  Biomineralization in perforate foraminifera , 2014 .

[7]  G. Reichart,et al.  Variability in calcitic Mg/Ca and Sr/Ca ratios in clones of the benthic foraminifer Ammonia tepida , 2014 .

[8]  U. Riebesell,et al.  Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2 , 2014, PloS one.

[9]  G. Nehrke,et al.  A new model for biomineralization and trace-element signatures of Foraminifera tests , 2013 .

[10]  J. Bijma,et al.  Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration , 2013 .

[11]  Chris Yesson,et al.  Climate change and the oceans--what does the future hold? , 2013, Marine pollution bulletin.

[12]  G. Nehrke,et al.  Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration , 2013 .

[13]  F. Jorissen,et al.  A reappraisal of the vital effect in cultured benthic foraminifer Bulimina marginata on Mg/Ca values: assessing temperature uncertainty relationships , 2012 .

[14]  G. Langer,et al.  Calcification acidifies the microenvironment of a benthic foraminifer (Ammonia sp.) , 2012 .

[15]  D. Wolf-Gladrow,et al.  Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies , 2012 .

[16]  Stephen Barker,et al.  The Geological Record of Ocean Acidification , 2011, Science.

[17]  G. Reichart,et al.  Independent impacts of calcium and carbonate ion concentration on Mg and Sr incorporation in cultured benthic foraminifera , 2011 .

[18]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[19]  T. Bickert,et al.  U/Ca in benthic foraminifers: A proxy for the deep‐sea carbonate saturation , 2011 .

[20]  G. Langer,et al.  CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporus , 2011 .

[21]  F. Rodríguez-Tovar,et al.  Impact of the Paleocene–Eocene Thermal Maximum on the macrobenthic community: Ichnological record from the Zumaia section, northern Spain , 2011 .

[22]  R. Schiebel,et al.  Mg/Ca and δ18O in the brackish shallow-water benthic foraminifer Ammonia ‘beccarii’ , 2011 .

[23]  L. D. Nooijer,et al.  Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer , 2011 .

[24]  W. Kiessling,et al.  On the potential for ocean acidification to be a general cause of ancient reef crises , 2011 .

[25]  W. Broecker,et al.  An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions , 2010 .

[26]  G. Reichart,et al.  Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state , 2010 .

[27]  G. Nehrke,et al.  Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida , 2010 .

[28]  J. Erez,et al.  The role of seawater endocytosis in the biomineralization process in calcareous foraminifera , 2009, Proceedings of the National Academy of Sciences.

[29]  G. Nehrke,et al.  Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry , 2009 .

[30]  H. Kitazato,et al.  Foraminifera promote calcification by elevating their intracellular pH , 2009, Proceedings of the National Academy of Sciences.

[31]  M. Siddall,et al.  Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition , 2009, Science.

[32]  R. Tiedemann,et al.  Calibrating Mg/Ca ratios of multiple planktonic foraminiferal species with δ 18 O-calcification temperatures: Paleothermometry for the upper water column , 2009 .

[33]  J. Erez,et al.  Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white) , 2008 .

[34]  B. Hönisch,et al.  B/Ca in planktonic foraminifera as a proxy for surface seawater pH , 2007 .

[35]  G. Nehrke,et al.  Dependence of calcite growth rate and Sr partitioning on solution stoichiometry: Non-Kossel crystal growth , 2007 .

[36]  Ulf Riebesell,et al.  Species‐specific responses of calcifying algae to changing seawater carbonate chemistry , 2006 .

[37]  Y. Rosenthal,et al.  Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans , 2006 .

[38]  J. Erez,et al.  Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective , 2006 .

[39]  U. Riebesell,et al.  Coccolith strontium to calcium ratios in Emiliania huxleyi: The dependence on seawater strontium and calcium concentrations , 2006 .

[40]  K. Rogers,et al.  Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera , 2005 .

[41]  S. Medvedev Calcium signaling system in plants , 2005, Russian Journal of Plant Physiology.

[42]  M. Pagani,et al.  A critical evaluation of the boron isotope- pH proxy: The accuracy of ancient ocean pH estimates , 2005 .

[43]  B. Hönisch,et al.  Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera , 2004 .

[44]  C. M. Triggs,et al.  Morphological distinction of molecular types in Ammonia – towards a taxonomic revision of the world’s most commonly misidentified foraminifera , 2004 .

[45]  F. Jorissen,et al.  Single foraminiferal test chemistry records the marine environment , 2003 .

[46]  H. Elderfield,et al.  A Cenozoic seawater Sr/Ca record from benthic foraminiferal calcite and its application in determining global weathering fluxes , 2003 .

[47]  J. Erez The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies , 2003 .

[48]  B. Hönisch,et al.  Impact of the ocean carbonate chemistry on living foraminiferal shell weight: Comment on “Carbonate ion concentration in glacial‐age deep waters of the Caribbean Sea” by W. S. Broecker and E. Clark , 2002 .

[49]  T. Marchitto,et al.  Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic , 2002 .

[50]  W. Broecker,et al.  Carbonate ion concentration in glacial‐age deep waters of the Caribbean Sea , 2002 .

[51]  D. Wolf-Gladrow,et al.  CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2001 .

[52]  D. Lea,et al.  Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. , 2001 .

[53]  D. Schrag,et al.  Sr/Ca variations in Cretaceous carbonates: relation to productivity and sea level changes , 2001 .

[54]  M. Sarnthein,et al.  Variation of foraminiferal Sr/Ca over Quaternary glacial‐interglacial cycles: Evidence for changes in mean ocean Sr/Ca? , 2000 .

[55]  T. Marchitto,et al.  Zinc concentrations in benthic foraminifera reflect seawater chemistry , 2000 .

[56]  R. Reeder,et al.  Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments , 2000 .

[57]  D. Schrag,et al.  Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate , 2000 .

[58]  A. Mount,et al.  Nucleation and growth of calcite on native versus pyrolyzed oyster shell folia. , 2000, The Biological bulletin.

[59]  D. Lea,et al.  Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing , 1999 .

[60]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[61]  D. Schrag,et al.  Effects of Quaternary Sea Level Cycles on Strontium in Seawater , 1998 .

[62]  E. Boyle,et al.  Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from Little Bahama Bank: Prospects for thermocline paleoceanography , 1997 .

[63]  J. Erez,et al.  A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate , 1996 .

[64]  J. Pankow,et al.  Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite , 1996 .

[65]  C. Hemleben,et al.  Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures , 1996 .

[66]  P. Martin,et al.  Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau , 1995 .

[67]  W. Broecker,et al.  Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera , 1995, Nature.

[68]  A. Dickson The development of the alkalinity concept in marine chemistry , 1992 .

[69]  M. Berman,et al.  Stoichiometries of calcium and strontium transport coupled to ATP and acetyl phosphate hydrolysis by skeletal sarcoplasmic reticulum. , 1990, Biochimica et biophysica acta.

[70]  Christoph Hemleben,et al.  Modern Planktonic Foraminifera , 1988, Springer New York.

[71]  E. Boyle Cadmium: Chemical tracer of deepwater paleoceanography , 1988 .

[72]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[73]  E. Boyle,et al.  Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores , 1985 .

[74]  Robert B. Lorens,et al.  Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate , 1981 .

[75]  A. D. Smith,et al.  Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana , 1979 .

[76]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[77]  R. Röttger Die Ektoplasmahülle von Heterostegina depressa (Foraminifera:Nummulitidae) , 1973 .

[78]  C. Emiliani Mineralogical and chemical composition of the tests of certain pelagic foraminifera , 1955 .

[79]  D. Wallace,et al.  MS Excel Program Developed for CO2 System Calculations , 2011 .

[80]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[81]  G. Hanson,et al.  BORON ISOTOPIC COMPOSITION AND CONCENTRATION IN MODERN MARINE CARBONATES , 1992 .

[82]  M. Spindler,et al.  Der kammerbauvorgang der großforaminifere Heterostegina depressa (Nummulitidae) , 1973 .

[83]  A. E. Nielsen Kinetics of precipitation , 1964 .