Unification of the matrix notation in molecular surface science

Abstract The matrix notation connecting the adsorbate lattice with the substrate is a suitable method to define periodic molecular overlayers on single crystalline surfaces. Despite the simplicity of this notation, there are different sets of rules in use, which are incomplete and allow ambiguous results. We suggest here a new consistent set of rules for unit cell selection and how to find in a uniform way a single matrix notation for equivalent structures. This is in particular important for meaningful database entries. Using examples from the literature, we show why existing rules fail to give unambiguous results and discuss in a tutorial manner how to apply the new rules.

[1]  W. Schneider,et al.  Three-dimensional chirality transfer in rubrene multilayer islands on Au(111). , 2009, Journal of Physical Chemistry B.

[2]  K. Ernst Supramolecular surface chirality , 2006 .

[3]  K. Baldridge,et al.  Reversible phase transitions in a buckybowl monolayer. , 2009, Angewandte Chemie.

[4]  A. M. Bradshaw,et al.  Symmetry, selection rules and nomenclature in surface spectroscopies (IUPAC Recommendations 1996) , 1996 .

[5]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[6]  R. Raval,et al.  Creating Chiral Surfaces for Enantioselective Heterogeneous Catalysis: R,R-Tartaric Acid on Cu(110) , 1999 .

[7]  Robert L. Park,et al.  Annealing changes on the (100) surface of palladium and their effect on CO adsorption , 1968 .

[8]  F. D. Schryver,et al.  Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy , 2003 .

[9]  M. Ward,et al.  Epitaxy and Molecular Organization on Solid Substrates , 2001 .

[10]  C. Schalley,et al.  Formation of 2D supramolecular architectures at electrochemical solid/liquid interfaces , 2005 .

[11]  S. M. Barlow,et al.  Complex organic molecules at metal surfaces: bonding, organisation and chirality , 2003 .

[12]  R. Fasel,et al.  Amplification of chirality in two-dimensional enantiomorphous lattices , 2006, Nature.

[13]  Yeliang Wang,et al.  Ordering of dipeptide chains on Cu surfaces through 2D cocrystallization. , 2007, Journal of the American Chemical Society.

[14]  C. Nuckolls,et al.  An aromatic coupling motif for two-dimensional supramolecular architectures. , 2008, Chemical communications.

[15]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[16]  R. Fasel,et al.  Chirality transfer from single molecules into self-assembled monolayers. , 2003, Angewandte Chemie.

[17]  Yeliang Wang,et al.  Metal-organic coordination interactions in Fe-terephthalic acid networks on Cu(100). , 2008, Journal of the American Chemical Society.

[18]  R. Raval,et al.  Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules , 2000, Nature.

[19]  R. Fasel,et al.  Coverage and Enantiomeric Excess Dependent Enantiomorphism in Two-Dimensional Molecular Crystals† , 2008 .

[20]  A. Matzger,et al.  Molecular packing and symmetry of two-dimensional crystals. , 2007, Accounts of chemical research.

[21]  G. Koller,et al.  Polymorph selection in 2D crystals by phase transition blocking. , 2009, Chemical communications.

[22]  E. A. Wood,et al.  Vocabulary of Surface Crystallography , 1964 .

[23]  F. Besenbacher,et al.  Coexistence of homochiral and heterochiral adenine domains at the liquid/solid interface. , 2007, The journal of physical chemistry. B.

[24]  C. Kittel Introduction to solid state physics , 1954 .