Density functional theories study on optoelectronic properties of arsenic-doped GaN nanowires

[1]  S. Elahi,et al.  Effects of vacancies on electronic and optical properties of GaN nanosheet: A density functional study , 2015 .

[2]  Xiaoyu Liu,et al.  Growth and field emission properties of GaN nanopencils , 2015 .

[3]  Deming Ma,et al.  Optical and field emission properties of layer-structure GaN nanowires , 2014 .

[4]  Jie-dong Lin,et al.  Field emission properties of the Te-doped pseudohydrogen passivated GaN nanowires: A first principle density functional study , 2014 .

[5]  William J. Weber,et al.  First principles study of electronic properties of gallium nitride nanowires grown along different crystal directions , 2010 .

[6]  Zhiguo Wang,et al.  First principles study of N–N split interstitial in GaN nanowires , 2010 .

[7]  Thierry Pauporté,et al.  Low‐Voltage UV‐Electroluminescence from ZnO‐Nanowire Array/p‐GaN Light‐Emitting Diodes , 2010, Advanced materials.

[8]  G. Gao,et al.  Ab initio pseudopotential studies of the pressure dependences of structural, electronic and optical properties for GaN , 2006 .

[9]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[10]  Joel W. Ager,et al.  Valence band hybridization in N-rich GaN1-xAsx alloys , 2004 .

[11]  C. T. Foxon,et al.  The transition from As-doped GaN, showing blue emission, to GaNAs alloys in films grown by molecular beam epitaxy , 2002 .

[12]  M. Fox Optical Properties of Solids , 2010 .

[13]  N. Bouarissa Pressure dependence of optoelectronic properties of GaN in the zinc-blende structure , 2002 .

[14]  Hsiang-Jen Huang,et al.  Isoelectronic As doping effects on the optical characteristics of GaN films grown by metalorganic chemical-vapor deposition , 2000 .

[15]  K. Ploog,et al.  Suppression of yellow luminescence in As-doped GaN epilayers grown by metalorganic chemical vapor deposition , 2000 .

[16]  Nakamura,et al.  The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes , 1998, Science.

[17]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[18]  Takashi Mukai,et al.  High‐power InGaN/GaN double‐heterostructure violet light emitting diodes , 1993 .

[19]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[20]  Takashi Mukai,et al.  High-Power GaN P-N Junction Blue-Light-Emitting Diodes , 1991 .

[21]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[22]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[23]  J. Toll Causality and the Dispersion Relation: Logical Foundations , 1956 .

[24]  L. Dobbin A Handbook of Physics and Chemistry , 1900, Nature.