Learning Modulo Theories for constructive preference elicitation

Abstract This paper introduces CLEO, a novel preference elicitation algorithm capable of recommending complex configurable objects characterized by both discrete and continuous attributes and constraints defined over them. While existing preference elicitation techniques focus on searching for the best instance in a database of candidates, CLEO takes a constructive approach to recommendation through interactive optimization in a space of feasible configurations. The algorithm assumes minimal initial information, i.e., a set of catalog attributes, and defines decisional features as logic formulae combining Boolean and algebraic constraints over the attributes. The (unknown) utility of the decision maker is modeled as a weighted combination of features. CLEO iteratively alternates a preference elicitation step, where pairs of candidate configurations are selected based on the current utility model, and a refinement step where the utility is refined by incorporating the feedback received. The elicitation step leverages a Max-SMT solver to return optimal configurations according to the current utility model. The refinement step is implemented as learning to rank, and a sparsifying norm is used to favor the selection of few informative features in the combinatorial space of candidate decisional features. A major feature of CLEO is that it can recommend optimal configurations in hybrid domains (i.e., including both Boolean and numeric attributes), thanks to the use of Max-SMT technology, while retaining uncertainty in the decision-maker's utility and noisy feedback. In so doing, it adapts the recently introduced learning modulo theory framework to the preference elicitation setting. The combinatorial formulation of the utility function coupled with the feature selection capabilities of 1-norm regularization allow to effectively deal with the uncertainty in the DM utility while retaining high expressiveness. Experimental results on complex recommendation tasks show the ability of CLEO to quickly identify optimal configurations, as well as its capacity to recover from suboptimal initial choices. Our empirical evaluation highlights how CLEO outperforms a state-of-the-art Bayesian preference elicitation algorithm when applied to a purely discrete task

[1]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[2]  J. March Bounded rationality, ambiguity, and the engineering of choice , 1978 .

[3]  Leonardo Mendonça de Moura,et al.  Solving non-linear arithmetic , 2012, ACCA.

[4]  Roberto Battiti,et al.  Active Learning of Combinatorial Features for Interactive Optimization , 2011, LION.

[5]  A. Rivlin,et al.  Economic Choices , 2001 .

[6]  Andrea Passerini,et al.  Structured learning modulo theories , 2014, Artif. Intell..

[7]  B. Jones BOUNDED RATIONALITY , 1999 .

[8]  Alexander Felfernig,et al.  Knowledge-Based Configuration: From Research to Business Cases , 2014 .

[9]  Craig Boutilier,et al.  Recommendation Sets and Choice Queries: There Is No Exploration/Exploitation Tradeoff! , 2011, AAAI.

[10]  Christian Igel,et al.  Active learning with support vector machines , 2014, WIREs Data Mining Knowl. Discov..

[11]  Scott Sanner,et al.  Real-time Multiattribute Bayesian Preference Elicitation with Pairwise Comparison Queries , 2010, AISTATS.

[12]  Alberto Griggio,et al.  A Modular Approach to MaxSAT Modulo Theories , 2013, SAT.

[13]  Jun Wang,et al.  Urban pattern , 2013, ACM Trans. Graph..

[14]  Darius Braziunas,et al.  Computational Approaches to Preference Elicitation , 2006 .

[15]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[16]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[17]  Yi Zhang,et al.  Incorporating Diversity and Density in Active Learning for Relevance Feedback , 2007, ECIR.

[18]  Craig Boutilier,et al.  Regret-based optimal recommendation sets in conversational recommender systems , 2009, RecSys '09.

[19]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[20]  Bernhard Schölkopf,et al.  Use of the Zero-Norm with Linear Models and Kernel Methods , 2003, J. Mach. Learn. Res..

[21]  Paolo Viappiani,et al.  Monte Carlo Methods for Preference Learning , 2012, LION.

[22]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[23]  Boi Faltings,et al.  Conversational recommenders with adaptive suggestions , 2007, RecSys '07.

[24]  Andrea Passerini,et al.  Constructive Preference Elicitation , 2018, Front. Robot. AI.

[25]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[26]  Gabriella Pigozzi,et al.  Preferences in artificial intelligence , 2016, Annals of Mathematics and Artificial Intelligence.

[27]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[28]  Michael I. Jordan,et al.  Discussion of Boosting Papers , 2003 .

[29]  Vladlen Koltun,et al.  Computer-generated residential building layouts , 2010, SIGGRAPH 2010.

[30]  Craig Boutilier,et al.  A Constraint-Based Approach to Preference Elicitation and Decision Making , 1997 .

[31]  Eyke Hüllermeier,et al.  Preferences in AI: An overview , 2011, Artif. Intell..

[32]  Silvia Tomasi,et al.  Optimization Modulo Theories with Linear Rational Costs , 2014, ACM Trans. Comput. Log..

[33]  Vangelis Th. Paschos,et al.  Applications of combinatorial optimization , 2010 .

[34]  R. Plackett The Analysis of Permutations , 1975 .

[35]  Cesare Tinelli,et al.  Satisfiability Modulo Theories , 2021, Handbook of Satisfiability.

[36]  Vincent Conitzer,et al.  Eliciting single-peaked preferences using comparison queries , 2007, AAMAS '07.

[37]  Mark P. Graus,et al.  Understanding choice overload in recommender systems , 2010, RecSys '10.

[38]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[39]  Pearl Pu,et al.  A Comparative Study of Compound Critique Generation in Conversational Recommender Systems , 2006, AH.

[40]  Chi-Keung Tang,et al.  Make it home: automatic optimization of furniture arrangement , 2011, SIGGRAPH 2011.

[41]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[42]  Tom Heskes,et al.  Efficiently learning the preferences of people , 2012, Machine Learning.

[43]  Filip Radlinski,et al.  Active exploration for learning rankings from clickthrough data , 2007, KDD '07.

[44]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[45]  Jennifer G. Dy,et al.  Active Learning from Crowds , 2011, ICML.

[46]  Maya R. Gupta,et al.  How to Analyze Paired Comparison Data , 2011 .

[47]  Albert Oliveras,et al.  On SAT Modulo Theories and Optimization Problems , 2006, SAT.

[48]  Andrea Passerini,et al.  Coactive Critiquing: Elicitation of Preferences and Features , 2016, AAAI.

[49]  Chiranjib Bhattacharyya,et al.  Structured learning for non-smooth ranking losses , 2008, KDD.

[50]  Toby Walsh,et al.  Elicitation strategies for soft constraint problems with missing preferences: Properties, algorithms and experimental studies , 2010, Artif. Intell..

[51]  Thomas E. Allen,et al.  CP-nets: From Theory to Practice , 2015, ADT.

[52]  Martin Fränzle,et al.  Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure , 2007, J. Satisf. Boolean Model. Comput..

[53]  Craig Boutilier,et al.  Simultaneous Elicitation of Preference Features and Utility , 2010, AAAI.

[54]  H. A. David,et al.  The method of paired comparisons , 1966 .

[55]  Alberto Griggio,et al.  Satisfiability Modulo the Theory of Costs: Foundations and Applications , 2010, TACAS.

[56]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[57]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[58]  Daniel Larraz,et al.  Minimal-Model-Guided Approaches to Solving Polynomial Constraints and Extensions , 2014, SAT.

[59]  Scott Sanner,et al.  Gaussian Process Preference Elicitation , 2010, NIPS.

[60]  Andrea Passerini,et al.  Constructive Preference Elicitation by Setwise Max-Margin Learning , 2016, IJCAI.

[61]  Andrea Passerini,et al.  Constructive Preference Elicitation over Hybrid Combinatorial Spaces , 2017, AAAI.

[62]  Robert Tibshirani,et al.  1-norm Support Vector Machines , 2003, NIPS.

[63]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[64]  Chih-Jen Lin,et al.  A Bayesian Approximation Method for Online Ranking , 2011, J. Mach. Learn. Res..

[65]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[66]  David Cohn,et al.  Active Learning , 2010, Encyclopedia of Machine Learning.

[67]  R. Battiti,et al.  Handling concept drift in preference learning for interactive decision making , 2010 .

[68]  Li Chen,et al.  User-Involved Preference Elicitation for Product Search and Recommender Systems , 2008, AI Mag..

[69]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[70]  TerzopoulosDemetri,et al.  Make it home , 2011 .

[71]  Daniel Sabin,et al.  Product Configuration Frameworks - A Survey , 1998, IEEE Intell. Syst..

[72]  Alan Baddeley,et al.  Working Memory , 1974, Psychology of Learning and Motivation.

[73]  Paolo Viappiani,et al.  Preferences in Interactive Systems: Technical Challenges and Case Studies , 2008, AI Mag..

[74]  Francesco Ricci,et al.  Recommender Systems , 2007, 2007 40th Annual Hawaii International Conference on System Sciences (HICSS'07).

[75]  Craig Boutilier,et al.  Minimax regret based elicitation of generalized additive utilities , 2007, UAI.