LISA source confusion: identification and characterization of signals
暂无分享,去创建一个
N. Christensen | M. Hendry | J. Veitch | G. Woan | R. Meyer | Richard Umstatter | V. Simha | S. Vigeland | Richard Umstätter
[1] K. Roeder,et al. Journal of the American Statistical Association: Comment , 2006 .
[2] N. Christensen,et al. Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.
[3] Philip C. Gregory,et al. Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .
[4] Nicholas Rose,et al. Highly Structured Stochastic Systems , 2005, Technometrics.
[5] P. Gregory. Bayesian Logical Data Analysis for the Physical Sciences: The how-to of Bayesian inference , 2005 .
[6] N. Christensen,et al. Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method , 2004 .
[7] C. Cutler,et al. Confusion Noise from LISA Capture Sources , 2004, gr-qc/0409010.
[8] N. Cornish,et al. LISA Source Confusion , 2004, gr-qc/0404129.
[9] N. Christensen,et al. Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data , 2004, gr-qc/0402038.
[10] A. Libson,et al. A Metropolis-Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data , 2004 .
[11] M. Benacquista,et al. A simulation of the laser interferometer space antenna data stream from galactic white dwarf binaries , 2003, gr-qc/0308041.
[12] Peter Green,et al. Highly Structured Stochastic Systems , 2003 .
[13] Karsten Danzmann,et al. LISA technology - concept, status, prospects , 2003 .
[14] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[15] N. Cornish,et al. LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.
[16] P. Green,et al. Delayed rejection in reversible jump Metropolis–Hastings , 2001 .
[17] S. F. Portegies Zwart,et al. The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.
[18] C. Robert,et al. Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .
[19] Christophe Andrieu,et al. Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..
[20] L Tierney,et al. Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.
[21] Bradley P. Carlin,et al. Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .
[22] P. Green,et al. On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .
[23] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[24] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[25] L. Rezzolla,et al. Classical and Quantum Gravity , 2002 .
[26] T. Loredo. From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics , 1990 .
[27] L. M. Berliner,et al. Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems , 1989 .
[28] Marvin H. J. Guber. Bayesian Spectrum Analysis and Parameter Estimation , 1988 .
[29] E. T. Jaynes,et al. Bayesian Spectrum and Chirp Analysis , 1987 .
[30] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[31] J. H. Ward. Hierarchical Grouping to Optimize an Objective Function , 1963 .
[32] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[33] Proceedings of the Royal Society (London) , 1906, Science.
[34] A. Schuster,et al. The periodogram and its optical analogy , 1906, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character.
[35] K. Pearson,et al. Biometrika , 1902, The American Naturalist.