Identified nonspiking interneurons in leg reflexes and during walking in the stick insect

In the stick insect Carausius morosus identified nonspiking interneurons (type E4) were investigated in the mesothoracic ganglion during intraand intersegmental reflexes and during searching and walking.In the standing and in the actively moving animal interneurons of type E4 drive the excitatory extensor tibiae motoneurons, up to four excitatory protractor coxae motoneurons, and the common inhibitor 1 motoneuron (Figs. 1–4).In the standing animal a depolarization of this type of interneuron is induced by tactile stimuli to the tarsi of the ipsilateral front, middle and hind legs (Fig. 5). This response precedes and accompanies the observed activation of the affected middle leg motoneurons. The same is true when compensatory leg placement reflexes are elicited by tactile stimuli given to the tarsi of the legs (Fig. 6).During forward walking the membrane potential of interneurons of type E4 is strongly modulated in the step-cycle (Figs.8–10). The peak depolarization occurs at the transition from stance to swing. The oscillations in membrane potential are correlated with the activity profile of the extensor motoneurons and the common inhibitor 1 (Fig. 9).The described properties of interneuron type E4 in the actively behaving animal show that these interneurons are involved in the organization and coordination of the motor output of the proximal leg joints during reflex movements and during walking.

[1]  B. Bush Proprioceptive reflexes in the legs of Carcinus maenas (L.). , 1962, The Journal of experimental biology.

[2]  M. Burns THE CONTROL OF WALKING IN ORTHOPTERA I. LEG MOVEMENTS IN NORMAL WALKING , 1973 .

[3]  K. Pearson,et al.  Properties of the trochanteral hair plate and its function in the control of walking in the cockroach. , 1976, The Journal of experimental biology.

[4]  K G Pearson,et al.  Connexions between hair-plate afferents and motoneurones in the cockroach leg. , 1976, The Journal of experimental biology.

[5]  M. Burns,et al.  The Control of Walking in Orthoptera: II. Motor Neurone Activity in Normal Free-Walking Animals , 1979 .

[6]  H. Cruse The control system of the femur tibia joint in the standing and the walking stick insect (Carausius morosus). , 1980 .

[7]  F. Clarac,et al.  Reversal of a Walking Leg Reflex Elicited by a Muscle Receptor , 1981 .

[8]  Holk Cruse,et al.  Is the position of the femur tibia joint under feedback control in the walking stick insect? : I. Force measurements , 1981 .

[9]  Professor Dr. Ulrich Bässler Neural Basis of Elementary Behavior in Stick Insects , 1983, Studies of Brain Function.

[10]  H. Cruse,et al.  The control system of the femur-tibia joint in the standing leg of a walking stick insect Carausius morosus , 1983 .

[11]  D. Graham,et al.  A preparation of the stick insect Carausius morosus for recording intracellularly from identified neurones during walking , 1984 .

[12]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[13]  D. Graham Pattern and Control of Walking in Insects , 1985 .

[14]  J. Schmitz Control of the leg joints in stick insects: Differences in the reflex properties between the standing and the walking states. , 1985 .

[15]  S. Zill,et al.  Plasticity and proprioception in insects. I. Responses and cellular properties of individual receptors of the locust metathoracic femoral chordotonal organ. , 1985, The Journal of experimental biology.

[16]  S. Zill Plasticity and proprioception in insects. II. Modes of reflex action of the locust metathoracic femoral chordotonal organ. , 1985, The Journal of experimental biology.

[17]  U. Bässler,et al.  Motoneurone im Meso- und Metathorakalganglion der Stabheuschrecke Carausius morosus , 1986 .

[18]  K. Sillar,et al.  Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. , 1986, Journal of neurophysiology.

[19]  S. Zill Selective mechanical stimulation of an identified proprioceptor in freely moving locusts: role of resistance reflexes in active posture , 1987, Brain Research.

[20]  M. Burrows Parallel processing of proprioceptive signals by spiking local interneurons and motor neurons in the locust , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  G. Laurent The role of spiking local interneurons in shaping the receptive fields of intersegmental interneurons in the locust , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  G. Laurent,et al.  A Population of ascending intersegmental interneurones in the locust with mechanosensory inputs from a hind leg , 1988, The Journal of comparative neurology.

[23]  G. Laurent,et al.  Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  U. Bässler Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences , 1988 .

[25]  J. Schmitz,et al.  An improved electrode design for en passant recording from small nerves. , 1988, Comparative biochemistry and physiology. A, Comparative physiology.

[26]  G. Laurent,et al.  Distribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Ulrich Bässler Pattern Generation for Walking Movements , 1989 .

[28]  A. Büschges Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects , 1989 .

[29]  Reflex circuits and the control of movement , 1989 .

[30]  H. Wolf Activity Patterns of Inhibitory Motoneurones and their Impact on Leg Movement in Tethered Walking Locusts , 1990 .

[31]  A. Büschges Nonspiking pathways in a joint-control loop of the stick insect Carausius morosus. , 1990 .

[32]  R. Kittmann,et al.  GAIN CONTROL IN THE FEMUR-TIBIA FEEDBACK SYSTEM OF THE STICK INSECT , 1991 .

[33]  J. Schmitz,et al.  Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. , 1991, Journal of neurobiology.

[34]  J. Schmitz,et al.  Intracellular recordings from nonspiking interneurons in a semiintact, tethered walking insect. , 1991, Journal of neurobiology.

[35]  M. Burrows Local circuits for the control of leg movements in an insect , 1992, Trends in Neurosciences.

[36]  U. Bässler The femur-tibia control system of stick insects — a model system for the study of the neural basis of joint control , 1993, Brain Research Reviews.

[37]  U. Bässler,et al.  Reversal of a reflex to a single motoneuron in the stick insect Çarausius morosus , 1976, Biological Cybernetics.

[38]  O. V. Helversen,et al.  The stridulatory movements of acridid grasshoppers recorded with an opto-electronic device , 2004, Journal of comparative physiology.

[39]  D. Weidler,et al.  The role of cations in conduction in the central nervous system of the herbivorous insect Carausius morosus , 1969, Zeitschrift für vergleichende Physiologie.

[40]  Ulrich Bässler,et al.  The walking-(and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators , 1993, Biological Cybernetics.

[41]  The common inhibitory neuron innervates every leg muscle in crabs , 1986, Journal of Comparative Physiology A.

[42]  U. Bässler,et al.  Interneurones participating in the “active reaction” in stick insects , 1990, Biological Cybernetics.

[43]  D. Graham Walking kinetics of the stick insect using a low-inertia counter-balanced, pair of independent treadwheels , 1981, Biological Cybernetics.

[44]  D. Ballantyne,et al.  On the function of the common inhibitory neurone in the walking legs of the crab,Eriphia spinifrons , 1981, Journal of comparative physiology.

[45]  The distribution of the common inhibitory neuron in brachyuran limb musculature , 2004, Journal of Comparative Physiology A.

[46]  S. Grillner,et al.  On the central generation of locomotion in the low spinal cat , 1979, Experimental Brain Research.

[47]  A. Büschges,et al.  The neural basis of catalepsy in the stick insect , 1993, Journal of Comparative Physiology A.

[48]  Ulrich Bässler,et al.  Proprioreceptoren am Subcoxal-und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung , 1965, Kybernetik.

[49]  G. Wendler Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen , 1964, Zeitschrift für vergleichende Physiologie.

[50]  G. Wendler,et al.  The reflex behaviour and innervation of the tergo-coxal retractor muscles of the stick insectCarausius morosus , 1981, Journal of comparative physiology.

[51]  J. Schmitz The depressor trochanteris motoneurones and their role in the coxo-trochanteral feedback loop in the stick insect Carausius morosus , 1986, Biological Cybernetics.

[52]  Ulrich Bässler,et al.  The neural basis of the femur-tibia-control-system in the stick insect Carausius morosus , 1980, Biological Cybernetics.

[53]  F. Clarac,et al.  Monosynaptic connections mediate resistance reflex in crayfish (Procambarus clarkii) walking legs , 1991, Journal of Comparative Physiology A.

[54]  Gilles Laurent,et al.  Thoracic intersegmental interneurones in the locust with mechanoreceptive inputs from a leg , 1986, Journal of Comparative Physiology A.

[55]  W. Rathmayer,et al.  Central organization of common inhibitory motoneurons in the locust: role of afferent signals from leg mechanoreceptors , 1993, Journal of Comparative Physiology A.

[56]  J. Dean,et al.  Central projections of leg sense organs inCarausius morosus (Insecta, Phasmida) , 1991, Zoomorphology.

[57]  G. Laurent,et al.  Direct excitation of nonspiking local interneurones by exteroceptors underlies tactile reflexes in the locust , 1988, Journal of Comparative Physiology A.