Statistical Computing on Non-Linear Spaces for Computational Anatomy

Computational anatomy is an emerging discipline that aims at analyzing and modeling the individual anatomy of organs and their biological variability across a population. However, understanding and modeling the shape of organs is made difficult by the absence of physical models for comparing different subjects, the complexity of shapes, and the high number of degrees of freedom implied. Moreover, the geometric nature of the anatomical features usually extracted raises the need for statistics on objects like curves, surfaces and deformations that do not belong to standard Euclidean spaces. We explain in this chapter how the Riemannian structure can provide a powerful framework to build generic statistical computing tools. We show that few computational tools derive for each Riemannian metric can be used in practice as the basic atoms to build more complex generic algorithms such as interpolation, filtering and anisotropic diffusion on fields of geometric features. This computational framework is illustrated with the analysis of the shape of the scoliotic spine and the modeling of the brain variability from sulcal lines where the results suggest new anatomical findings.

[1]  A. Toga,et al.  Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. , 1997, Journal of computer assisted tomography.

[2]  J. M. Oller,et al.  AN EXPLICIT SOLUTION OF INFORMATION GEODESIC EQUATIONS FOR THE MULTIVARIATE NORMAL MODEL , 1991 .

[3]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[4]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[5]  Nicholas Ayache,et al.  Riemannian Elasticity: A Statistical Regularization Framework for Non-linear Registration , 2005, MICCAI.

[6]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[7]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[8]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[9]  T. Brox,et al.  Diffusion and regularization of vector- and matrix-valued images , 2002 .

[10]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[12]  H. Poincaré Calcul des Probabilités , 1912 .

[13]  P. Fillard,et al.  Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. , 2007, Neuroimaging clinics of North America.

[14]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[15]  F. Bookstein,et al.  The Measurement of Biological Shape and Shape Change. , 1980 .

[16]  N. Ayache,et al.  A novel framework for the 3D analysis of spine deformation modes. , 2006, Studies in health technology and informatics.

[17]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[18]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[19]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[20]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[21]  Michael I. Miller,et al.  Landmark matching via large deformation diffeomorphisms , 2000, IEEE Trans. Image Process..

[22]  Michael I. Miller,et al.  Group Actions, Homeomorphisms, and Matching: A General Framework , 2004, International Journal of Computer Vision.

[23]  Nicholas Ayache,et al.  Fast and Simple Calculus on Tensors in the Log-Euclidean Framework , 2005, MICCAI.

[24]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[25]  Nicholas Ayache,et al.  A Riemannian Framework for the Processing of Tensor-Valued Images , 2005, DSSCV.

[26]  Nicholas Ayache,et al.  Geometric Variability of the Scoliotic Spine Using Statistics on Articulated Shape Models , 2008, IEEE Transactions on Medical Imaging.

[27]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[28]  Christopher R. Johnson,et al.  Mathematics and Visualization , 2014, MICCAI 2014.

[29]  Thomas Brox,et al.  Nonlinear structure tensors , 2006, Image Vis. Comput..

[30]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[31]  Alain Trouvé,et al.  Measuring Brain Variability Via Sulcal Lines Registration: A Diffeomorphic Approach , 2007, MICCAI.

[32]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[33]  R. Woods,et al.  Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. , 2001, Cerebral cortex.

[34]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[35]  Xavier Pennec,et al.  Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements , 1999, NSIP.

[36]  Robert E. Mahony,et al.  The Geometry of the Newton Method on Non-Compact Lie Groups , 2002, J. Glob. Optim..

[37]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[38]  Nicholas Ayache,et al.  A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas , 1998, Medical Image Anal..

[39]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[40]  G. Aubert,et al.  Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Applied Mathematical Sciences) , 2006 .

[41]  Stéphane Lavallée,et al.  Building a Complete Surface Model from Sparse Data Using Statistical Shape Models: Application to Computer Assisted Knee Surgery System , 1998, MICCAI.

[42]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[43]  Anders Brun,et al.  Manifolds in Image Science and Visualization , 2007 .

[44]  P. Thomas Fletcher,et al.  Gaussian Distributions on Lie Groups and Their Application to Statistical Shape Analysis , 2003, IPMI.

[45]  K. Nomizu Invariant Affine Connections on Homogeneous Spaces , 1954 .

[46]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[47]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[48]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[49]  L. Skovgaard A Riemannian geometry of the multivariate normal model , 1984 .

[50]  Hans Hagen,et al.  Visualization and Processing of Tensor Fields , 2014 .

[51]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part II. applications , 1997 .

[52]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[53]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[54]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  Paul M. Thompson,et al.  Measuring brain variability by extrapolating sparse tensor fields measured on sulcal lines , 2007, NeuroImage.

[56]  B. Owren,et al.  The Newton Iteration on Lie Groups , 2000 .

[57]  Nicholas Ayache,et al.  3D anatomical variability assessment of the scoliotic spine using statistics on Lie groups , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[58]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[59]  Editors , 1986, Brain Research Bulletin.

[60]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[61]  Martin Styner,et al.  Bone model morphing for enhanced surgical visualization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[62]  Paul M. Thompson,et al.  Extrapolation of Sparse Tensor Fields: Application to the Modeling of Brain Variability , 2005, IPMI.

[63]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[64]  P. Thompson,et al.  Evaluating Brain Anatomical Correlations via Canonical Correlation Analysis of Sulcal Lines , 2007 .

[65]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[66]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[67]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[68]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[69]  Xavier Pennec,et al.  A Framework for Uncertainty and Validation of 3-D Registration Methods Based on Points and Frames , 2004, International Journal of Computer Vision.

[70]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[71]  J. Weickert,et al.  Visualization and Processing of Tensor Fields (Mathematics and Visualization) , 2005 .

[72]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[73]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[74]  M. Menéndez,et al.  (h, Φ)-entropy differential metric , 1997 .

[75]  Nicholas Ayache,et al.  Principal Spine Shape Deformation Modes Using Riemannian Geometry and Articulated Models , 2006, AMDO.

[76]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[77]  J. Szpunar,et al.  Part II applications , 2003 .

[78]  D. Louis Collins,et al.  Object-based morphometry of the cerebral cortex , 2004, IEEE Transactions on Medical Imaging.

[79]  Michael I. Miller,et al.  Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus , 2007, NeuroImage.

[80]  E. Meijering A chronology of interpolation: from ancient astronomy to modern signal and image processing , 2002, Proc. IEEE.

[81]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.