Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials

Chemically cross-linked cellulose nanocrystal aerogels represent a versatile and universal substrate on which to prepare lightweight hybrid materials. In situ incorporation of polypyrrole nanofibers, polypyrrole-coated carbon nanotubes, and manganese dioxide nanoparticles in the aerogels gives flexible 3D supercapacitor devices with excellent capacitance retention, low internal resistance, and fast charge-discharge rates.

[1]  Kelly E. Parmenter,et al.  Mechanical properties of silica aerogels , 1998 .

[2]  Feijun Wang,et al.  Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors , 2013 .

[3]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[4]  H. Sehaqui,et al.  Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions , 2010 .

[5]  M. Ioniță,et al.  Polypyrrole/carbon nanotube composites: Molecular modeling and experimental investigation as anti-corrosive coating , 2011 .

[6]  Yi Cui,et al.  Transparent and conductive paper from nanocellulose fibers , 2013 .

[7]  Jinxing Huo,et al.  Freestanding nanocellulose-composite fibre reinforced 3D polypyrrole electrodes for energy storage applications. , 2014, Nanoscale.

[8]  Yi Cui,et al.  Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries , 2015, Nature Communications.

[9]  Pooi See Lee,et al.  Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors , 2014, Advanced materials.

[10]  K. Roh,et al.  Electrochemical Impedance Spectroscopic Investigation of Sodium Ion Diffusion in MnO2 Using a Constant Phase Element Active in Desired Frequency Ranges , 2014 .

[11]  Xuan Yang,et al.  Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties , 2014 .

[12]  Yi Cui,et al.  Nanostructured paper for flexible energy and electronic devices , 2013 .

[13]  Lars Wågberg,et al.  Highly conducting, strong nanocomposites based on nanocellulose-assisted aqueous dispersions of single-wall carbon nanotubes. , 2014, ACS nano.

[14]  Long-Term Charge/Discharge Cycling Stability of MnO2 Aqueous Supercapacitor under Positive Polarization , 2011 .

[15]  Lars Wågberg,et al.  Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. , 2013, Angewandte Chemie.

[16]  Jean Bouchard,et al.  Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. , 2014, Journal of the American Chemical Society.

[17]  L. Heux,et al.  Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents , 2013 .

[18]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[19]  I. Zhitomirsky,et al.  Anionic dopant–dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading , 2014 .

[20]  S. Ramesh,et al.  Effect of Copper Oxide and Manganese Oxide on Properties and Low Temperature Degradation of Sintered Y-TZP Ceramic , 2014, Journal of Materials Engineering and Performance.

[21]  P. Rüetschi Cation‐Vacancy Model for MnO2 , 1984 .

[22]  Z. Cai,et al.  Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)–multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties , 2013 .

[23]  L. Heath,et al.  Cellulose nanowhisker aerogels , 2010 .

[24]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[25]  John M. Fonner,et al.  A Combined Molecular Dynamics and Experimental Study of Doped Polypyrrole. , 2010, Polymer.

[26]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[27]  I. Zhitomirsky,et al.  Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance , 2014 .

[28]  L. Berglund,et al.  Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. , 2010, Nature nanotechnology.

[29]  I. Zhitomirsky,et al.  New colloidal route for electrostatic assembly of oxide nanoparticle – carbon nanotube composites , 2014 .

[30]  S. Ardizzone,et al.  "Inner" and "outer" active surface of RuO2 electrodes , 1990 .

[31]  M. Roman Toxicity of Cellulose Nanocrystals: A Review , 2015 .

[32]  Akira Isogai,et al.  Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. , 2013, Biomacromolecules.

[33]  Weihua Tang,et al.  Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors , 2013 .

[34]  Feijun Wang,et al.  Cellulose nanofiber–graphene all solid-state flexible supercapacitors , 2013 .

[35]  Bo-Yeong Kim,et al.  All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. , 2012, ACS nano.

[36]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[37]  Robin H. A. Ras,et al.  Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing , 2013, Advanced materials.

[38]  Igor Zhitomirsky,et al.  Electrodes for Electrochemical Supercapacitors , 2009 .

[39]  A. Ragauskas,et al.  Cellulose nanowhisker foams by freeze casting , 2012 .

[40]  A. Yu,et al.  Cost-effective and Scalable Chemical Synthesis of Conductive Cellulose Nanocrystals for High-performance Supercapacitors , 2014 .

[41]  I. Zhitomirsky,et al.  Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant† , 2013 .

[42]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[43]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[44]  Ziqiang Shao,et al.  Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. , 2014, Nanoscale.

[45]  Ziyin Lin,et al.  Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors , 2014 .

[46]  Gordon G Wallace,et al.  Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte. , 2013, ACS applied materials & interfaces.

[47]  Mathieu Toupin,et al.  Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide , 2002 .

[48]  Maria Strømme,et al.  Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. , 2015, ACS nano.