Debates with Small Transparent Quantum Verifiers

We study a model where two opposing provers debate over the membership status of a given string in a language, trying to convince a weak verifier whose coins are visible to all. We show that the incorporation of just two qubits to an otherwise classical constant-space verifier raises the class of debatable languages from at most NP to the collection of all Turing-decidable languages (recursive languages). When the verifier is further constrained to make the correct decision with probability 1, the corresponding class goes up from the regular languages up to at least E.

[1]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[2]  Abuzer Yakaryilmaz Quantum Alternation , 2013, CSR.

[3]  Uriel Feige,et al.  Making games short (extended abstract) , 1997, STOC '97.

[4]  Joan Feigenbaum,et al.  Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions , 1993, STOC.

[5]  Rusins Freivalds,et al.  A new family of nonstochastic languages , 2010, Inf. Process. Lett..

[6]  A. C. Cem Say,et al.  Quantum Finite Automata: A Modern Introduction , 2014, Computing with New Resources.

[7]  YA. YA. KANEPS,et al.  Stochasticity of the languages acceptable by two-way finite probabilistic automata , 1991 .

[8]  Richard J. Lipton,et al.  Alternating Pushdown Automata (Preliminary Report) , 1978, FOCS.

[9]  Abuzer Yakaryilmaz,et al.  Public-qubits versus private-coins , 2012, Electron. Colloquium Comput. Complex..

[10]  Lisa Hellerstein,et al.  On the Power of Finite Automata with Both Nondeterministic and Probabilistic States , 1998, SIAM J. Comput..

[11]  A. C. Cem Say,et al.  Debates with Small Transparent Quantum Verifiers , 2016, Int. J. Found. Comput. Sci..

[12]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[13]  A. C. Cem Say,et al.  The Complexity of Debate Checking , 2015, Theory of Computing Systems.

[14]  M. Rabin Real time computation , 1963 .

[15]  Richard E. Ladner,et al.  Probabilistic Game Automata , 1986, J. Comput. Syst. Sci..

[16]  Richard J. Lipton,et al.  On the complexity of space bounded interactive proofs , 1989, 30th Annual Symposium on Foundations of Computer Science.

[17]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[18]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[19]  Paavo Turakainen On nonstochastic languages and homomorphic images of stochastic languages , 1981, Inf. Sci..

[20]  Cynthia Dwork,et al.  Finite state verifiers I: the power of interaction , 1992, JACM.

[21]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[22]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[23]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[24]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[25]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[26]  Richard E. Ladner,et al.  Probabilistic Game Automata , 1988, J. Comput. Syst. Sci..

[27]  Anne Condon,et al.  Computational models of games , 1989, ACM distinguished dissertations.

[28]  Shenggen Zheng,et al.  Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata , 2013, Inf. Comput..

[29]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.

[30]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.