The genetics and mechanisms of T cell acute lymphoblastic leukaemia

[1]  M. Toribio,et al.  Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling , 2016, Leukemia.

[2]  V. Brown,et al.  Transplant Outcomes for Children with T Cell Acute Lymphoblastic Leukemia in Second Remission: A Report from the Center for International Blood and Marrow Transplant Research. , 2015, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[3]  V. Beneš,et al.  Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation , 2015, Haematologica.

[4]  C. Mullighan,et al.  Acute Lymphoblastic Leukemia in Children. , 2015, The New England journal of medicine.

[5]  C. Dang,et al.  MYC, Metabolism, and Cancer. , 2015, Cancer discovery.

[6]  A. Ferrando,et al.  How I treat T-cell acute lymphoblastic leukemia in adults. , 2015, Blood.

[7]  J. Ghysdael,et al.  CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. , 2015, Cancer cell.

[8]  A. Ferrando,et al.  CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. , 2015, Cancer cell.

[9]  Ryoichiro Kageyama,et al.  Therapeutic targeting of HES1 transcriptional programs in T-ALL. , 2015, Blood.

[10]  Jing Ma,et al.  Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia , 2015, Nature Communications.

[11]  M. Loh,et al.  Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. , 2015, Blood.

[12]  T. Révész,et al.  Persistent MRD before and after allogeneic BMT predicts relapse in children with acute lymphoblastic leukaemia , 2015, British journal of haematology.

[13]  B. Nadel,et al.  Site- and allele-specific polycomb dysregulation in T-cell leukaemia , 2015, Nature Communications.

[14]  Jihui Wu,et al.  Structural Basis of Plant Homeodomain Finger 6 (PHF6) Recognition by the Retinoblastoma Binding Protein 4 (RBBP4) Component of the Nucleosome Remodeling and Deacetylase (NuRD) Complex* , 2015, The Journal of Biological Chemistry.

[15]  G. Berx,et al.  ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling , 2015, Nature Communications.

[16]  F. Speleman,et al.  ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. , 2014, Blood.

[17]  Konstantinos J. Mavrakis,et al.  Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia , 2014, Science Signaling.

[18]  S. Aerts,et al.  JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. , 2014, Blood.

[19]  J. Schug,et al.  Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia , 2014, Proceedings of the National Academy of Sciences.

[20]  R. Young,et al.  An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element , 2014, Science.

[21]  Na Li,et al.  Cyclin C is a haploinsufficient tumour suppressor , 2014, Nature Cell Biology.

[22]  T. Rausch,et al.  The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse , 2014, Haematologica.

[23]  F. Speleman,et al.  MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[24]  Teresa Palomero,et al.  A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia , 2014, Nature Medicine.

[25]  R. Wade,et al.  Outcome for children and young people with Early T‐cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003 , 2014, British journal of haematology.

[26]  Aristotelis Tsirigos,et al.  Genome-wide Mapping and Characterization of Notch-Regulated Long Noncoding RNAs in Acute Leukemia , 2014, Cell.

[27]  Konstantinos J. Mavrakis,et al.  RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer , 2014, Nature.

[28]  Rob Pieters,et al.  PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. , 2014, Blood.

[29]  R. Jaenisch,et al.  Contrasting roles for histone 3 lysine 27 demethylases in acute lymphoblastic leukemia , 2014, Nature.

[30]  M. Loh,et al.  Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. , 2014, Cancer discovery.

[31]  Sridhar Ramaswamy,et al.  Targeting transcription regulation in cancer with a covalent CDK7 inhibitor , 2014, Nature.

[32]  R. Amini,et al.  High relapse rate of T cell acute lymphoblastic leukemia in adults treated with Hyper‐CVAD chemotherapy in Sweden , 2014, European journal of haematology.

[33]  C. Mullighan,et al.  Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential , 2014, The Journal of experimental medicine.

[34]  B. Nadel,et al.  Therapeutic Targeting of c-Myc in T-Cell Acute Lymphoblastic Leukemia (T-ALL) , 2014, Oncotarget.

[35]  O. Lohi,et al.  Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[36]  A. Look,et al.  c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. , 2014, Blood.

[37]  Fang Fang,et al.  The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. , 2014, Blood.

[38]  Jon C. Aster,et al.  NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers , 2013, Proceedings of the National Academy of Sciences.

[39]  Jie Shen,et al.  Characterization of Two Distinct Lymphoproliferative Diseases Caused by Ectopic Expression of the Notch Ligand DLL4 on T Cells , 2013, PloS one.

[40]  K. Hozumi,et al.  In vivo leukemogenic potential of an interleukin 7 receptor α chain mutant in hematopoietic stem and progenitor cells. , 2013, Blood.

[41]  Andrea Califano,et al.  Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. , 2013, Cancer cell.

[42]  W. Chung,et al.  Genetic loss of SH2B3 in acute lymphoblastic leukemia. , 2013, Blood.

[43]  R. Young,et al.  The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia , 2013, The Journal of experimental medicine.

[44]  C. Pui,et al.  A 50-year journey to cure childhood acute lymphoblastic leukemia. , 2013, Seminars in hematology.

[45]  A. Ferrando,et al.  The Ubiquitin Ligase FBXW7 Modulates Leukemia-Initiating Cell Activity by Regulating MYC Stability , 2013, Cell.

[46]  M. Rudnicki,et al.  The X-Linked Intellectual Disability Protein PHF6 Associates with the PAF1 Complex and Regulates Neuronal Migration in the Mammalian Brain , 2013, Neuron.

[47]  M. Muckenthaler,et al.  NOTCH1 activation clinically antagonizes the unfavorable effect of PTEN inactivation in BFM-treated children with precursor T-cell acute lymphoblastic leukemia , 2013, Haematologica.

[48]  W. Vainchenker,et al.  JAK/STAT signaling in hematological malignancies , 2013, Oncogene.

[49]  C. Pui,et al.  Relapsed childhood acute lymphoblastic leukaemia. , 2013, The Lancet. Oncology.

[50]  Junjie Chen,et al.  PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis , 2013, Epigenetics & Chromatin.

[51]  A. Kohlmann,et al.  The molecular profile of adult T‐cell acute lymphoblastic leukemia: Mutations in RUNX1 and DNMT3A are associated with poor prognosis in T‐ALL , 2013, Genes, chromosomes & cancer.

[52]  W. Evans,et al.  Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia , 2013, Nature Genetics.

[53]  A. Ferrando,et al.  Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL , 2013, Nature Medicine.

[54]  Stein Aerts,et al.  Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia , 2012, Nature Genetics.

[55]  A. Ferrando,et al.  Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. , 2012, Blood.

[56]  B. Nadel,et al.  Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. , 2012, Blood.

[57]  J. Soulier,et al.  Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. , 2012, Cancer cell.

[58]  S. Armstrong,et al.  mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. , 2012, Cell stem cell.

[59]  Richard A Young,et al.  Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. , 2012, Cancer cell.

[60]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[61]  D. Picketts,et al.  PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. , 2012, Journal of proteome research.

[62]  B. Nadel,et al.  TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. , 2012, Cancer cell.

[63]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[64]  R. Pieters,et al.  Characterization of a pediatric T-cell acute lymphoblastic leukemia patient with simultaneous LYL1 and LMO2 rearrangements , 2012, Haematologica.

[65]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[66]  A. Ferrando,et al.  ETV6 mutations in early immature human T cell leukemias , 2011, The Journal of experimental medicine.

[67]  J. Wingard,et al.  Malignancies after hematopoietic cell transplantation for primary immune deficiencies: a report from the Center for International Blood and Marrow Transplant Research. , 2011, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[68]  Andrea Califano,et al.  Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL , 2011, Nature Medicine.

[69]  J. Downing,et al.  The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. , 2011, Blood.

[70]  A. Ferrando,et al.  Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia , 2011, Nature Genetics.

[71]  A. Hsieh,et al.  Oncogenic AKTivation of translation as a therapeutic target , 2011, British Journal of Cancer.

[72]  F. Sigaux,et al.  PTPN2 negatively regulates oncogenic JAK1 in T-cell acute lymphoblastic leukemia. , 2011, Blood.

[73]  M. Muckenthaler,et al.  Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias , 2011, The Journal of experimental medicine.

[74]  Andrew P. Stubbs,et al.  Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. , 2011, Cancer cell.

[75]  A. Ferrando,et al.  Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. , 2011, Blood reviews.

[76]  M. Chiang,et al.  Transient Responses to NOTCH and TLX1/HOX11 Inhibition in T-Cell Acute Lymphoblastic Leukemia/Lymphoma , 2011, PloS one.

[77]  H. Macdonald,et al.  Hes1 is a critical but context-dependent mediator of canonical Notch signaling in lymphocyte development and transformation. , 2010, Immunity.

[78]  J. McCubrey,et al.  Cancer esearch apeutics , Targets , and Chemical Biology ivity of the Novel Dual Phosphatidylinositol 3-Kinase / malian Target of Rapamycin Inhibitor NVP-BEZ 235 R inst T-Cell Acute Lymphoblastic Leukemia , 2010 .

[79]  A. Hunter,et al.  T‐cell acute lymphoblastic leukemia in association with Börjeson–Forssman–Lehmann syndrome due to a mutation in PHF6 , 2010, Pediatric blood & cancer.

[80]  J. Cayuela,et al.  NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia , 2010, The Journal of experimental medicine.

[81]  Andrea Califano,et al.  The TLX1 oncogene drives aneuploidy in T-cell transformation , 2010, Nature Medicine.

[82]  A. Statnikov,et al.  The Notch/Hes1 pathway sustains NF-κB activation through CYLD repression in T cell leukemia. , 2010, Cancer cell.

[83]  A. Ferrando,et al.  Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia , 2010, Nature Immunology.

[84]  M. Leid,et al.  An Early T Cell Lineage Commitment Checkpoint Dependent on the Transcription Factor Bcl11b , 2010, Science.

[85]  T. Hoang,et al.  Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. , 2010, Genes & development.

[86]  Donna Neuberg,et al.  Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. , 2010, Blood.

[87]  D. Felsher,et al.  MYC as a regulator of ribosome biogenesis and protein synthesis , 2010, Nature Reviews Cancer.

[88]  Rob Pieters,et al.  PHF6 mutations in T-cell acute lymphoblastic leukemia , 2010, Nature Genetics.

[89]  H. Dombret,et al.  JAK1 mutations are not frequent events in adult T‐ALL: a GRAALL study , 2010, British journal of haematology.

[90]  M. Muckenthaler,et al.  High-resolution genomic profiling of childhood T-ALL reveals frequent copy-number alterations affecting the TGF-beta and PI3K-AKT pathways and deletions at 6q15-16.1 as a genomic marker for unfavorable early treatment response. , 2009, Blood.

[91]  A. Ferrando,et al.  WT1 mutations in T-ALL. , 2009, Blood.

[92]  L. Chin,et al.  High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. , 2009, Blood.

[93]  B. Johansson,et al.  The t(X;7)(q22;q34) in paediatric T‐cell acute lymphoblastic leukaemia results in overexpression of the insulin receptor substrate 4 gene through illegitimate recombination with the T‐cell receptor beta locus , 2009, British journal of haematology.

[94]  Cheng Cheng,et al.  Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. , 2009, The Lancet. Oncology.

[95]  B. Leber,et al.  Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. , 2008, Blood.

[96]  S. Fröhling,et al.  K-RasG12D-induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to gamma-secretase inhibitors. , 2008, Blood.

[97]  J. Aster,et al.  Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. , 2008, The Journal of clinical investigation.

[98]  Christine Kinnon,et al.  Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. , 2008, The Journal of clinical investigation.

[99]  F. Bushman,et al.  Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. , 2008, The Journal of clinical investigation.

[100]  J. Meijerink,et al.  Monoallelic or biallelic LMO2 expression in relation to the LMO2 rearrangement status in pediatric T-cell acute lymphoblastic leukemia , 2008, Leukemia.

[101]  D. Gilliland,et al.  Activity of tyrosine kinase inhibitors against human NUP214-ABL1-positive T cell malignancies , 2008, Leukemia.

[102]  A. Ferrando,et al.  The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia , 2008, Cell cycle.

[103]  R. Pieters,et al.  Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. , 2008, Blood.

[104]  E. Clappier,et al.  Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia , 2008, The Journal of experimental medicine.

[105]  Charles Lee,et al.  Alu elements mediate MYB gene tandem duplication in human T-ALL , 2007, The Journal of experimental medicine.

[106]  Andrew P. Stubbs,et al.  The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. , 2007, Blood.

[107]  Howard Y. Chang,et al.  A histone H3 lysine 27 demethylase regulates animal posterior development , 2007, Nature.

[108]  Govind Bhagat,et al.  Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia , 2007, Nature Medicine.

[109]  B. Nadel,et al.  The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. , 2007, Blood.

[110]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[111]  A. Ferrando,et al.  The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia , 2007, The Journal of experimental medicine.

[112]  T. Ludwig,et al.  Unequal Contribution of Akt Isoforms in the Double-Negative to Double-Positive Thymocyte Transition1 , 2007, The Journal of Immunology.

[113]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[114]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[115]  R. Mazzucchelli,et al.  Interleukin-7 receptor expression: intelligent design , 2007, Nature Reviews Immunology.

[116]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[117]  M. Tallman,et al.  In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: fin , 2006, Blood.

[118]  Charles Lee,et al.  The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. , 2006, Blood.

[119]  A. Krueger,et al.  Articles on similar topics can be found in the following Blood collections Cell Cycle (231 articles) , 2006 .

[120]  T. Golub,et al.  Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. , 2006, Cancer cell.

[121]  M. Bhasin,et al.  Notch1 Contributes to Mouse T-Cell Leukemia by Directly Inducing the Expression of c-myc , 2006, Molecular and Cellular Biology.

[122]  J. Aster,et al.  c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. , 2006, Genes & development.

[123]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[124]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[125]  Freddy Radtke,et al.  Paradigms of Notch Signaling in Mammals , 2005 .

[126]  A. Veerman,et al.  Role of 5'-nucleotidase in thiopurine metabolism: enzyme kinetic profile and association with thio-GMP levels in patients with acute lymphoblastic leukemia during 6-mercaptopurine treatment. , 2005, Clinica chimica acta; international journal of clinical chemistry.

[127]  E. Vigorito,et al.  Cutting Edge: T Cell Development Requires the Combined Activities of the p110γ and p110δ Catalytic Isoforms of Phosphatidylinositol 3-Kinase1 , 2005, The Journal of Immunology.

[128]  B. Mitchell,et al.  The 5'-nucleotidases as regulators of nucleotide and drug metabolism. , 2005, Pharmacology & therapeutics.

[129]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[130]  Peter Marynen,et al.  Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). , 2005, Blood.

[131]  J. Cayuela,et al.  Impact of TCR status and genotype on outcome in adult T-cell acute lymphoblastic leukemia: a LALA-94 study. , 2005, Blood.

[132]  Y. Pei,et al.  Functional analysis of a novel GATA3 mutation in a family with the hypoparathyroidism, deafness, and renal dysplasia syndrome. , 2005, The Journal of clinical endocrinology and metabolism.

[133]  P. Marynen,et al.  A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias , 2005, Leukemia.

[134]  J. Kutok,et al.  Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. , 2004, Blood.

[135]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[136]  S. Orkin,et al.  Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. , 2004, Genes & development.

[137]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[138]  A. Ferrando,et al.  Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. , 2004, Blood.

[139]  K. Nakayama,et al.  Phosphorylation‐dependent degradation of c‐Myc is mediated by the F‐box protein Fbw7 , 2004, The EMBO journal.

[140]  B. Clurman,et al.  The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[141]  M. Caligiuri,et al.  Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia , 2004, The Lancet.

[142]  Cameron S. Osborne,et al.  LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1 , 2003, Science.

[143]  R. Gelber,et al.  Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[144]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage , 2003 .

[145]  S. Armstrong,et al.  Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. , 2003, Blood.

[146]  S. Aizawa,et al.  Bcl11b is required for differentiation and survival of αβ T lymphocytes , 2003, Nature Immunology.

[147]  P. Pandolfi,et al.  Does the ribosome translate cancer? , 2003, Nature Reviews Cancer.

[148]  A. Matsuki,et al.  Homozygous deletions and point mutations of the Rit1/Bcl11b gene in gamma-ray induced mouse thymic lymphomas. , 2003, Biochemical and biophysical research communications.

[149]  M. Shaw,et al.  Mutations in PHF6 are associated with Börjeson–Forssman–Lehmann syndrome , 2002, Nature Genetics.

[150]  Hengbin Wang,et al.  Role of Histone H3 Lysine 27 Methylation in Polycomb-Group Silencing , 2002, Science.

[151]  J. Zucman‐Rossi,et al.  HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. , 2002, Blood.

[152]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[153]  R. Heilig,et al.  A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia , 2001, Leukemia.

[154]  D. Haber,et al.  The Wilms tumor suppressor WT1 directs stage‐specific quiescence and differentiation of human hematopoietic progenitor cells , 2001, The EMBO journal.

[155]  H Clevers,et al.  All Tcf HMG box transcription factors interact with Groucho-related co-repressors. , 2001, Nucleic acids research.

[156]  P. Marynen,et al.  Molecular cytogenetic and clinical findings in ETV6/ABL1‐positive leukemia , 2001, Genes, chromosomes & cancer.

[157]  J. Downing,et al.  Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. , 2000, Immunity.

[158]  P. D. de Jong,et al.  The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[159]  John M. Maris,et al.  Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia , 1999, Nature Genetics.

[160]  H. Macdonald,et al.  Deficient T cell fate specification in mice with an induced inactivation of Notch1. , 1999, Immunity.

[161]  S. Burdach,et al.  A classification based on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcome in the COALL studies , 1999, Leukemia.

[162]  T. Mak,et al.  High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice , 1998, Current Biology.

[163]  Y Fujiwara,et al.  The TEL/ETV6 gene is required specifically for hematopoiesis in the bone marrow. , 1998, Genes & development.

[164]  F. Zindy,et al.  Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[165]  N. Heerema,et al.  Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[166]  R Berger,et al.  A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. , 1997, Science.

[167]  K. Gross,et al.  An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T‐cell malignancies in transgenic mice , 1997, The EMBO journal.

[168]  J. Leiden,et al.  Transcription factor GATA-3 is required for development of the T-cell lineage , 1996, Nature.

[169]  C. Croce,et al.  Advances in Brief T-Cell . . directed TAL-1 Expression Induces T-Cell Malignancies in Transgenic Mice ' , 2006 .

[170]  P. Leder,et al.  Tal‐1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. , 1996, The EMBO journal.

[171]  J. Downing,et al.  Molecular analysis of t(11;19) breakpoints in childhood acute leukemias. , 1996, Blood.

[172]  J. Sklar,et al.  Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles , 1996, The Journal of experimental medicine.

[173]  T. Rabbitts,et al.  Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. , 1996, The EMBO journal.

[174]  J. Downing,et al.  AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis , 1996, Cell.

[175]  Christel Brou,et al.  Signalling downstream of activated mammalian Notch , 1995, Nature.

[176]  T. Shows,et al.  Complex MLL rearrangement in a patient with T‐cell acute lymphoblastic leukemia , 1995, Genes, chromosomes & cancer.

[177]  M. Amylon,et al.  Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. , 1995, Blood.

[178]  F. Sigaux,et al.  Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. , 1994, Blood.

[179]  Roger J. Packer,et al.  Magnetic resonance scans should replace biopsies for the diagnosis of diffuse brain stem gliomas: a report from the Children's Cancer Group. , 1993, Neurosurgery.

[180]  T. Rabbitts,et al.  The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[181]  T. Rabbitts,et al.  T-cell acute lymphoblastic lymphoma induced in transgenic mice by the RBTN1 and RBTN2 LIM-domain genes. , 1992, Oncogene.

[182]  Michael L. Cleary,et al.  Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias , 1992, Cell.

[183]  G. Sclar,et al.  Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma , 1992, Molecular and cellular biology.

[184]  B. Lange,et al.  Pediatric leukemia/lymphoma with t(8;14)(q24;q11). , 1992, Leukemia.

[185]  R. Espinosa,et al.  TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[186]  T. Rabbitts,et al.  HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[187]  W. Ludwig,et al.  TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). , 1991, Oncogene.

[188]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[189]  S. Korsmeyer,et al.  Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. , 1991, Science.

[190]  A. Carroll,et al.  Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia , 1990, The Journal of experimental medicine.

[191]  R. Berger,et al.  Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T‐cell leukemias , 1990, Genes, chromosomes & cancer.

[192]  M. Cleary,et al.  lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif , 1989, Cell.

[193]  S. Korsmeyer,et al.  The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein , 1989, Molecular and cellular biology.

[194]  M. Bar‐eli,et al.  N‐RAS mutations in T‐cell acute lymphocytic leukaemia: analysis by direct sequencing detects a novel mutation , 1989, British journal of haematology.

[195]  T. Waldmann,et al.  Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[196]  F. Sigaux,et al.  A t(8;14)(q24;q11) translocation in a T‐cell leukemia (L1‐all) with c‐myc and TcR‐alpha chain locus rearrangements , 1986, International journal of cancer.

[197]  P. Nowell,et al.  Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. , 1986, Science.

[198]  J. Peto,et al.  Immunologically Defined Subclasses of Acute Lymphoblastic Leukaemia in Children: their Relationship to Presentation Features and Prognosis , 1981, British journal of haematology.

[199]  C. Bloomfield,et al.  Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia , 2013, Cancer.

[200]  A. Ferrando,et al.  PHF6 mutations in adult acute myeloid leukemia , 2011, Leukemia.

[201]  Claire Schwab,et al.  Acute lymphoblastic leukaemia. , 2011, Methods in molecular biology.

[202]  Iannis Aifantis,et al.  γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia , 2009, Nature Medicine.

[203]  M. O. Foltermann,et al.  Intelligent design. , 2007, The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha.

[204]  F. Sigaux,et al.  Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias , 2006, Leukemia.

[205]  J. V. van Dongen,et al.  The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. , 2006, Haematologica.