Plasmaspheric Hiss: Coherent and Intense

[1]  D. Gurnett,et al.  Spatiotemporal Variability and Propagation of Equatorial Noise Observed by Cluster , 2002 .

[2]  L. Storey,et al.  Initial survey of the wave distribution functions for plasmaspheric hiss observed by ISEE 1 , 1991 .

[3]  D. Baker,et al.  Disappearance of plasmaspheric hiss following interplanetary shock: DISAPPEARANCE OF PLASMASPHERIC HISS , 2015 .

[4]  J. Chum,et al.  Statistics of multispacecraft observations of chorus dispersion and source location , 2009 .

[5]  Richard M. Thorne,et al.  Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms , 1998 .

[6]  M. Spasojević,et al.  Global empirical models of plasmaspheric hiss using Van Allen Probes , 2015 .

[7]  R. Horne,et al.  Substorm dependence of plasmaspheric hiss , 2004 .

[8]  B. Ni,et al.  Evidence of stronger pitch angle scattering loss caused by oblique whistler‐mode waves as compared with quasi‐parallel waves , 2014 .

[9]  R. Horne,et al.  Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies , 2001 .

[10]  J. L. Green,et al.  On the origin of whistler mode radiation in the plasmasphere , 2005 .

[11]  M. Parrot,et al.  Characteristics of magnetospherically reflected chorus waves observed by CLUSTER , 2004 .

[12]  B. Tsurutani,et al.  Plasmaspheric hiss properties: Observations from Polar , 2015 .

[13]  B. Tsurutani,et al.  The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): a combination of midlatitude small coronal holes, low IMF B Z variances, low solar wind speeds and low solar magnetic fields , 2011 .

[14]  B. Tsurutani,et al.  Properties of obliquely propagating chorus , 2010 .

[15]  B. Tsurutani,et al.  Quasi-coherent chorus properties: 1. Implications for wave-particle interactions , 2011 .

[16]  M. Spasojević,et al.  Activity‐dependent global model of electron loss inside the plasmasphere , 2014 .

[17]  B. Tsurutani,et al.  Solar cycle dependence of High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? , 2013 .

[18]  V. Angelopoulos,et al.  An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions , 2009, Science.

[19]  D. Baker,et al.  Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure , 2017 .

[20]  L. Zelenyi,et al.  Storm‐induced energization of radiation belt electrons: Effect of wave obliquity , 2013 .

[21]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[22]  B. Ni,et al.  Electron scattering by whistler-mode ELF hiss in , 2008 .

[23]  Richard M. Thorne,et al.  Origins of plasmaspheric hiss , 2006 .

[24]  R. Horne,et al.  Modeling the properties of plasmaspheric hiss: 1. Dependence on chorus wave emission , 2012 .

[25]  J. Grebowsky,et al.  Plasma tail interpretations of pronounced detached plasma regions measured by Ogo 5 , 1974 .

[26]  B. Tsurutani,et al.  Dayside ELF electromagnetic wave survey: A Polar statistical study of chorus and hiss , 2012 .

[27]  L. Storey,et al.  Propagation analysis of plasmaspheric hiss using Polar PWI measurements , 2001 .

[28]  L. Y. Li,et al.  Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models , 2017 .

[29]  Y. Kasahara,et al.  Corotating solar wind streams and recurrent geomagnetic activity: A review , 2006 .

[30]  Y. Shprits,et al.  Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution , 2015 .

[31]  B. Tsurutani,et al.  Extremely intense ELF magnetosonic waves: A survey of polar observations , 2014 .

[32]  B. Tsurutani,et al.  The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains , 1987 .

[33]  R. Horne,et al.  Global Model of Plasmaspheric Hiss from Multiple Satellite Observations , 2018, 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC).

[34]  V. Angelopoulos,et al.  The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks , 2017 .

[35]  M. Balikhin,et al.  Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF‐SA measurements , 2013 .

[36]  N. Meredith,et al.  Plasmaspheric hiss overview and relation to chorus , 2009 .

[37]  B. Tsurutani,et al.  Two types of magnetospheric ELF chorus and their substorm dependences , 1977 .

[38]  P. Bellan Pitch angle scattering of an energetic magnetized particle by a circularly polarized electromagnetic wave , 2013 .

[39]  J. Bortnik,et al.  Statistical properties of low‐frequency plasmaspheric hiss , 2017 .

[40]  B. Tsurutani,et al.  Pitch angle transport of electrons due to cyclotron interactions with the coherent chorus subelements , 2010 .

[41]  A. Roux,et al.  A systematic study of ULF Waves Above FH+ from GEOS 1 and 2 Measurements and Their Relationships with proton ring distributions , 1982 .

[42]  M. Parrot,et al.  Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured ELF hiss , 2006 .

[43]  B. Tsurutani,et al.  Plasmaspheric hiss intensity variations during magnetic storms , 1974 .

[44]  J. Bortnik,et al.  The distribution of plasmaspheric hiss wave power with respect to plasmapause location , 2016 .

[45]  A. Korth,et al.  An experimental study of ELF/VLF hiss generation in the Earth's magnetosphere , 1988 .

[46]  G. Reeves,et al.  An unusual enhancement of low‐frequency plasmaspheric hiss in the outer plasmasphere associated with substorm‐injected electrons , 2013 .

[47]  B. Tsurutani,et al.  The local time variation of ELF emissions during periods of substorm activity , 1977 .

[48]  E. Smith,et al.  Observations of interaction regions and corotating shocks between one and five AU - Pioneers 10 and 11. [solar wind streams] , 1976 .

[49]  B. Tsurutani,et al.  Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle , 1995 .

[50]  B. Tsurutani,et al.  Two sources of dayside intense, quasi‐coherent plasmaspheric hiss: A new mechanism for the slot region? , 2017 .

[51]  R. Thorne,et al.  Intensity variation of ELF hiss and chorus during isolated substorms , 1974 .

[52]  Richard B. Horne,et al.  Three‐dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning‐generated whistlers , 2014 .

[53]  M. Parrot,et al.  Simultaneous observation of chorus and hiss near the plasmapause , 2012 .

[54]  D. L. Carpenter New whistler evidence of a dynamo origin of electric fields in the quiet plasmasphere , 1978 .

[55]  R. Horne,et al.  Proton and electron heating by radially propagating fast magnetosonic waves , 2000 .

[56]  J. Chum,et al.  The Origin of Plasmaspheric Hiss , 2009, Science.

[57]  R. Gendrin,et al.  VLF electromagnetic waves observed onboard GEOS-1 , 1978 .

[58]  U. Inan,et al.  Characteristics of wave‐particle interactions during sudden commencements: 2. Spacecraft observations , 1990 .

[59]  B. Tsurutani,et al.  Properties of dayside outer zone chorus during HILDCAA events: Loss of energetic electrons , 2009 .

[60]  R. Horne,et al.  Global model of lower band and upper band chorus from multiple satellite observations , 2012 .

[61]  A. Korth,et al.  Generation mechanism of plasmaspheric ELF/VLF hiss: A statistical study from GEOS 1 data , 1993 .

[62]  B. Tsurutani,et al.  Electromagnetic cyclotron waves in the dayside subsolar outer magnetosphere generated by enhanced solar wind pressure: EMIC wave coherency , 2015 .

[63]  N. Meredith,et al.  The unexpected origin of plasmaspheric hiss from discrete chorus emissions , 2008, Nature.

[64]  R. Thorne,et al.  On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause , 1979 .

[65]  F. Mozer,et al.  Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics , 2016 .

[66]  B. Tsurutani,et al.  Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events? , 2004 .

[67]  B. Tsurutani,et al.  Energetic electron (>10 keV) microburst precipitation, ~5–15 s X‐ray pulsations, chorus, and wave‐particle interactions: A review , 2013 .

[68]  J. R. Phillips,et al.  The Polar plasma wave instrument , 1995 .

[69]  S. Kokubun Characteristics of storm sudden commencement at geostationary orbit , 1983 .

[70]  V. Angelopoulos,et al.  First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation , 2015 .

[71]  R. Horne,et al.  Modeling the wave power distribution and characteristics of plasmaspheric hiss , 2011 .

[72]  Sergei Sazhin,et al.  Mid-latitude and plasmaspheric hiss: A review , 1992 .

[73]  B. Tsurutani,et al.  Postmidnight chorus: A substorm phenomenon , 1974 .

[74]  M. Spasojević,et al.  Statistical modeling of plasmaspheric hiss amplitude using solar wind measurements and geomagnetic indices , 2012 .

[75]  F. Mozer,et al.  Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy , 2015, Nature Communications.

[76]  O. Santolík New results of investigations of whistler-mode chorus emissions , 2008 .

[77]  B. Tsurutani,et al.  Superposed epoch analyses of HILDCAAs and their interplanetary drivers: Solar cycle and seasonal dependences , 2014 .

[78]  B. Tsurutani,et al.  Electromagnetic hiss and relativistic electron losses in the inner zone. [of magnetosphere] , 1975 .

[79]  Q. Zong,et al.  The relations between magnetospheric chorus and hiss inside and outside the plasmasphere boundary layer: Cluster observation , 2011 .

[80]  Craig A. Kletzing,et al.  Fine structure of plasmaspheric hiss , 2014 .

[81]  Richard B. Horne,et al.  Slot region electron loss timescales due to plasmaspheric hiss and lightning‐generated whistlers , 2007 .

[82]  Y. Kasahara,et al.  Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves , 2014 .

[83]  Qinghua Zhou,et al.  Influence of wave normal angles on hiss‐electron interaction in Earth's slot region , 2015 .

[84]  Edward J. Smith,et al.  Magnetosheath lion roars , 1976 .

[85]  R. Horne,et al.  Three‐dimensional ray tracing of VLF waves in a magnetospheric environment containing a plasmaspheric plume , 2009 .

[86]  U. Inan,et al.  Characteristics of wave‐particle interactions during sudden commencements: 1. Ground‐based observations , 1990 .

[87]  A. Kumamoto,et al.  Sudden commencements related plasma waves observed by the Akebono satellite in the polar region and inside the plasmasphere region , 2003 .

[88]  Y. Nishimura,et al.  Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics , 2015 .